به نام پروردگّار مهربان

Grinça

رشــتـهُ تجحربى دهم ه يازدههم • دوازدهم

مرورو جمعبندى كنكوردر ; - مهندس ياشار انگوتى • مهندس حسن محمدى - مدير گروه فيزيك و ناظر محتوايى: نصراله افاضل

Mood dy

فيزيك و اندازهَيرى

فيزيك دانش بنيادى

دانشمندان فيزيك با انجام آزمايشهاى مختلف، براى توصيف پديدههاى فيزيكى از قانون، مدل و نظريه استفاده مى كنند.
مدلها و نظلر يههاى فيزيكى در طول زمان معتبر نيستند و ممكن است با انجام آزمايشهاى جديد، تغيير كنند. (مانند اصلاح نظرئُ اتمى كه بارها توسط دانشمندان مختلف انجام شد.) ويرگّى آزمونذيّيرى و اصلاح نظر يههاى فيزيكى، نقطهُ قوت دانش فيزيكى است.

قانون

رابطهُ بين برخى از كميتهاى فيزيكى را توصيف مىكند و در دامنهُ وسيعى از پديدههاى گوناگون كاربرد دارد. (مانند قوانين نيوتون)

براى توصيف دامنٔ محدودترى از چديدههاى فيزيكى كه عموميت كمترى دارند، از اصل استفاده مىشود. (مانند اصل پاسكال كه فقط براى شارههاى ساكن معتبر است.)

مدلسازى در فيزيک
 +

مدلسازى فرايندى است كه طلى آن يك یديدءٔ فيزيكى، آنقدر ساده و آرمانى مىشود تا امكان بررسى و تحليل آن فراهم شود.

به عنوان مثال براى مدلسازى حركت توپ بسكتبال در فضا، آن را به صورت يك ذره در نظر مى گیيريمه و از چرخش توپ، تغيير نيروى گرانشى با تغيير ارتفاع و مقاومت هوا صرفنظلر مىكنيمه و در نهايت جهت حركت و نيروى وزن را بررسى مىكنيم.

فيزيك و اندازمكيرى

:

 بازَگشتى همراه نخواهد بودا.

تقسيمبندى كميتها

(1) كميت نردهاى: فقط با يك عدد و يكاى مناسب بيان مىشود. (1) كميت بردارى: علاوه بر يكى عدد و يكاى مناسب، جهت آن نيز بايد كمته شود. :
 كميتهايى مانند مسافت، تندى، انواع انرثىىها، كار، شار مغناطيسى، جريان، فشار و . . . همگى نردماىاند.
 نردماىاند.

كميتها و يكاهاى اصلى

هفت كميت زير، كميتهاى اصلى و يكاهاى آنها نيز يكاها آم اصلى اند.
 كميت وابستهاند و يكاى آنها برحسب يكاهاى اصلى تعريف مىشود و نيازى به تعريف يكاى مستقل براى كميتهاى فرعى نيست.

نماد يكا	نام يكا	كميت
m	متر	طول
kg	كيلوكرم	جرم
S	ثانيه	زمان
K	كلوين	L0
mol	هوّل	مقدار ماده
A	آمهر	جريان الكتريكى
cd	كَندلِ (شم)	شدت روشنايى

يكاى نجومى (AU) برابر با ميانگّين فاصلة زمين تا خورشيد و واحد طول مى وباشد. ممحنين سال نورى نيز مسافتى است كه نور در يك سال در خلأ طلى مى مكند و واحد طول است است.

كدام كميتها همكّى فرعى و نردهاى هستند؟
(Y) انرزی جنبشى ـ ـ شار مغناطيسى ـ شتاب
() نيرو - جرم - ترماى ويرّه
¢ (انرزى جنبشى ـ شار مغناطيسى ـ فشار
r) فشار - جرم - ميدان مغناطيسى

《F"

+ يكاى رُول، معادل كداميك از يكاهاى زير است؟
$\frac{\mathrm{kg} \cdot \mathrm{m}^{r}}{\mathrm{~s}^{r}}\left(\uparrow \quad \frac{\mathrm{~kg} \cdot \mathrm{~m}}{\mathrm{~s}^{r}}\right.$ ($^{r} \quad \frac{\mathrm{~kg} \cdot \mathrm{~m}^{r}}{\mathrm{~s}}$ (r $\quad \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}}$ ()
 رول را برحسب يكاهاى اصلى بهدست آوريم:

$$
\begin{aligned}
& \text { بدون يكا }
\end{aligned}
$$

تبديل زنجيرى

براى تبديل يكاها به روش تبديل زنجيرى، اندازء كميتها را در يك ضريب تبديل مناسـب (نسبتى از يكاها كه برابر عدد يك است) ضرب مىكنيم. مثال زير يك نمونه از تبديل زنجيرى است:

آهنگ

تغيير هر كميت را نسبت به زمان، معمولاً آهنگ آن كميت مىناميم. مثلاً اكر آهنگ خروج آب از شلنگى،

Ir (f
$1 / \mathrm{Y}$ (

- /Ir (r
./.)r (1

《 «»"
$r_{0} \frac{\mathrm{~cm}^{r}}{s}=r_{0} \frac{\mathrm{~cm}^{r}}{s} \times\left(\frac{1 \mathrm{~L}}{100 \mathrm{~cm}^{r}}\right) \times\left(\frac{9 . s}{1 \mathrm{~min}}\right)=\frac{r_{0} \times 9_{0}}{1000} \frac{\mathrm{~L}}{\mathrm{~min}}=1 / r \mathrm{~L} / \mathrm{min}$

سازگارى يكاها

در هر رابطه و فرمول فيزيك، يكاى نهايى كميتها در دو طرف رابطه بايد يكسان باشد. به عنوان مثال، امكان ندارد كه كميتى برحسب ثرول با كميتى برحسب متر برابر باشد. يعنى در فيزيكى دو تا سيب با دو تا كَلابى برابر نيست!

$$
\begin{aligned}
& \rho_{b \text { bico }}=\frac{m_{\text {bic }}}{V_{b خ_{0}}}=\frac{\rho_{1} V_{1}+\rho_{r} V_{r}}{V}=\frac{\rho_{1} \times \frac{1}{r} V+\rho_{r} \times \frac{r}{r} V}{V}=\frac{\rho_{1}+r \rho_{r}}{r}
\end{aligned}
$$

 (رياضى خارج 9 (9)

$$
\frac{1}{r}\left(r \quad \frac{1}{r}(r \quad r(r\right.
$$

层
$\rho_{b خ_{0}}=. / \mathrm{V} \Delta \mathrm{g} / \mathrm{cm}^{r}, \rho_{\mathrm{A}}=\varepsilon_{\circ} . \mathrm{g} / \mathrm{L}=. / \varepsilon \mathrm{g} / \mathrm{cm}^{r}, \rho_{\mathrm{B}}=\Lambda_{\circ} \cdot \mathrm{g} / \mathrm{L}=. / \wedge \mathrm{g} / \mathrm{cm}^{r}$

پرسشهای چهارگَزينهایی

(رياضى خارج عA)
مى
و كيلوكرم و ثانيه از \qquad ا. جرم و زمان از
() يكاهاى فرعى - يكاهاى اصلى إي

- / Δ (F

- Ka (r
r/Q()
r. طول يكى جسم با خطكشى كه بر حسب ميلىمتر مدرج شده، اندازمگيرى شده است. اين طول را بر (AD (رياضى (A)

$$
V \Delta / K(\varphi
$$

$v \Delta / \circ r \circ(r$
حسب سانتىمتر چحگونه میتوان نوشت؟
$V / \Delta r(r$
V / \circ ()

$r(Y$ $r(1$
If
$1 / \Delta(r$

هـ شكل مقابل نمايشعر دور موتور يك خودرو را برحسب دور بر دقيقه (rpm) نمايش مىدهدل. دقت و خطا به ترتيب از راست به

هی بر حسب rpm كدام است؟

$$
\begin{array}{ll}
\pm 1 \omega_{0}, r_{0} r_{0} r & \pm r_{0}, r_{0}() \\
\pm 1 r \omega_{0}, r \omega_{0}(r & \pm r \omega_{0}, r \omega_{0}(r
\end{array}
$$

فيزيك و اندازمكيرى

\& نتيجهٔ اندازهكيرى توسط خطكش مقابل به همراه خطاى آن بر حسب سانتىمتر كدام است؟ (بركرفته ازكتاب درسى)

$$
\begin{array}{cc}
r / V \Delta \pm 0 / r \Delta(r & r / v \pm_{0} / r \Delta() \\
r / V \Delta \pm 0 / r(\gamma & r / v \pm_{0} / r(r
\end{array}
$$

9 (\uparrow
Δ (
fr
$r(1$

$$
10^{19}\left(\mathrm { Y } \quad 1 0 ^ { 1 9 } \left(\mathrm{H} \quad 10^{1 \mathrm{r}} \mathrm{H} \quad 10^{10}()\right.\right.
$$

$$
10^{r \lambda}\left(\mathrm{~F} \quad 10^{r \Delta} \mathrm{Cr} \quad 10^{r r} \mathrm{C} \quad 10^{r q}()\right.
$$

$$
10^{r 0}\left(\mathrm{Y} \quad 10^{\mathrm{rr}} \mathrm{Cr} \quad 10^{19} \mathrm{C} \quad 10^{19} \mathrm{O}\right.
$$

 (رياضى خارج 1) برابر .
Kg. (F YF. (r lo ll

 (رياض خارج -9)

$$
\begin{array}{llll}
F 000 & \omega_{0} 0(r & r q_{0}(r & f_{0} 0()
\end{array}
$$

rr. دو استوانهُ همگّن A و B داراى جرم و ارتفاع مساوىاند. استوانه A توپر و استوانه B توخالى است. اكر شعاع خارجى اين دو استوانه با هم برابر و شعاع داخلى استوانه B B نصف شعاع خارجى آن آن (رياض A9)

$$
\frac{r}{r}\left(r \quad \frac { r } { r } \left(r \quad \frac { 1 } { r } \left(r \quad \frac{1}{f}()\right.\right.\right.
$$

 (رباضى خارح A^) ذوب شده چند ترم است؟ (

$$
\Delta_{0}(f
$$

fa (r
$\Delta(Y$
$f / \Delta(1)$
ه1 ا. جواهر فروشى در ساختن يك قطعه جواهر به جاى طلاى خالص، مقدارى نقره نيز به كار برده است. اتر حجم قطعهُ ساخته شده ها سانتىمتر مكعب و حگًالى آن

rACH rFA roctren

پاسخنامه تشريحى

آهنگَ خروج آب از شلنگ برابر با آهنگ تغيير حجم آب درون استخر است．آهنگ خروج آب را بر حسب $\frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=r \circ \frac{\mathrm{~L}}{\min } \times\left(\frac{1 \mathrm{~min}}{9 \cdot \mathrm{~S}}\right) \times\left(\frac{1 \mathrm{~m}^{r}}{1 \ldots \mathrm{~L}}\right)=\Delta \times 10^{-r} \mathrm{~m}^{r} / \mathrm{s} \quad$ ： تغيير حجم آب درون استخر برابر با A C بى مىباشد． $\Delta \mathrm{V}=\mathrm{A} \Delta \mathrm{h} \xrightarrow[\text { بر }]{\text { بر }} \xrightarrow{\text { ，}} \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}=\mathrm{A} \frac{\Delta \mathrm{h}}{\Delta \mathrm{t}} \Rightarrow \Delta \times 10^{-r}=r_{0} \times \frac{\Delta \mathrm{h}}{\Delta \mathrm{t}}$ $\Rightarrow \frac{\Delta \mathrm{h}}{\Delta \mathrm{t}}=. / \mathrm{r} \Delta \times 10^{-r} \mathrm{~m} / \mathrm{s} \xrightarrow{\times 1 \ldots} \frac{\Delta \mathrm{~h}}{\Delta \mathrm{t}}=. / \mathrm{r} \Delta \mathrm{mm} / \mathrm{s}$
«r＂
 صدم سانتىمتر）است．بنابراين، تزينهالى قابل قبول است كه دقيقاً تا يك صدم سانتىمتر رقم داشته باشثد و فقط گزينه 》٪＂اين ويرگّى را ادارد．

《F＂
بزرگى خطا در وسايل رقمى برابر با يكى واحد از آخرين رقم گّارش شده است：
$\left.خ= \pm \frac{1}{10.0} \mathrm{~mm}= \pm 10^{-9} \mathrm{~m}= \pm 1 \mu \mathrm{~m} \Rightarrow \right\rvert\,{ }_{\mathrm{L}}=1 \mu \mathrm{~m}$
《F» هـ
بين هر دو عدد به ههار قسمت تقسيم شده است، در نتيجه دقت برابر است با：

教 $= \pm \frac{r \Delta_{0}}{r}= \pm 1 r \Delta \mathrm{rpm}$
¢．
號 $\frac{1}{r} \mathrm{~cm}=. / \Delta \mathrm{cm}$ دقت برابر با كمينهُ درجهبندى است：

حون وسيله مدرج است، بايد يك رقم حدسى هم داشته باشيم．حدس من r／V cm است：
（ $=$／$/ \mathrm{cm} \pm . / \mathrm{cm} \mathrm{cm}$
رقهحدسى

كفتيم كه وقتى عددى بهصورت $a \times 10$ ت گزارش مىشود، تعداد ارقام با معناى آن برابر با تعداد ارقام با معناى a سهسقمبامعنا

= مفاهيم اوليهُ بار الكتريكى
= تيروى الكتريكى بين دو ذره باردار
= ميدان الكتريكى
= انرزى یتانسيل الكتريكى
= = يتانسيل الكتريكى
= توزيع بار الكتريكى در اجسام رسانا
=

层
" جهت شارش بار از جسم با بار منفى به جسم با بار مثبت است (اترَ بارها همنام باشند، با در نظر ترفتن علامت، بار از جسمى كه بار كمترى دارد، به جسمى كه بار بار بيشترى دارد، منتقل مى بشود).
| تماس دو كرةٔ رسانا به يكديگر
با اتصال دو كرء فلزی مشابه با بارهاى $q_{1}^{\prime}=q_{r}^{\prime}=\frac{q_{1}+q_{r}}{r}$
(با هم برابر شده و مقدار آن برابر است با:
= اتر كرهها هماندازه نباشند، كرء بزرگتر بار بيشترى مىيابد.

و (

$$
\begin{aligned}
& \text { (رياضى خارح A9) } \\
& \Delta(F \\
& \Lambda(\Gamma \\
& \text { هر كره چند ميكروكولن مى شوه؟ } \\
& \text { 1. (Y } \\
& \text { V(1) } \\
& \mathrm{q}_{1}=1 r \mu \mathrm{C}, \quad \mathrm{q}_{\mathrm{r}}=-r \mu \mathrm{C}, \quad \mathrm{q}_{1}^{\prime}=\mathrm{q}_{\mathrm{r}}^{\prime}=\frac{\mathrm{q}_{1}+\mathrm{q}_{\mathrm{r}}}{r}=\frac{1 r-r}{r}=\Delta \mu \mathrm{C} \quad \text { «F» }
\end{aligned}
$$

جابهجا شدن بار الكتريكى درون يك جسم در اثر نيروى جاذبه يا دافعءٔ الكتريكى است و براى اجسام رسانا به كار میرود.

\# ع علامت بار ايجاد شده در رسانا مخالف بار جسم القاكننده است.
 بيشتر است).

$$
\left|\mathrm{q}_{\mathrm{A}}\right|<\left|\mathrm{q}_{\mathrm{B}}\right| \uparrow^{\uparrow}
$$

A در شكل مقابل، اندازء بار ميله، q است و كرههاى رساناى و B در ابتدا بار الكتريكى ندارند و در تماس با يكديگر هستند.

 كَزينه درست است؟ $\left|q_{A}\right|>\left|q_{B}\right|(r$

$$
\mathrm{q}_{\mathrm{A}}=-\mathrm{q}_{\mathrm{B}}(\mathrm{r}
$$

$$
\mathrm{q}_{\mathrm{A}}=\mathrm{q}_{\mathrm{B}}(1
$$

نيروى الكتريكى بين دو جسم باردار

 $\vec{F}_{Y Y}=-\vec{F}_{Y 1} \Rightarrow F_{\mid r}=F_{Y 1}=F \quad$ سوم نيوتون هماندازه و در خلاف جهت هم هستندي

قانون كولن

اندازءٔ نيروى الكتريكى بين دو بار نقطهاى از رابطهُ زير بهدست مى آيد:

9 لفص

ديناميك

|
= =معرفى برخى نيروهاى خاص ت تـكانه و قانون دوم نيوتون

معرفى برخى از نيروهاى خاص

جرم

نيروى وزن (W)

وزن جسم A در سطح زمين با وزن جسم B B در سطح ماه برابر است. جرم جسم A A هند برابر
(بركرفته از كتاب درسى)

$$
\begin{aligned}
& \frac{\Delta}{r}\left(F \quad \frac{r}{\Delta} \pi \quad \frac{r \Delta}{r}(r\right.
\end{aligned}
$$

"
كاستخ

نيروى مقاومت شاره (f

 اتر جسم در هوا حركت كند به اين نيرو، نيروى مقاومت هوا مى میويند.
 باشد، نيروى مقاومت شاره بزرگتر خواهد شد.

سطح زمين

تندى حدى

مطابق شكل مقابل جسمى را در نظر بتيريد كه در هوا سقوط مى مكند. به علت نيروى وزن، رفتهرفته تندى جسمر بيشتر مى شود و و به همين

 اين تندي خاص، تندى حدى مى گويند. در شكل مقابل نمودار تندى جسمى كه در هوا از حال سكون از يك ارتفاع بلند سقوط مى كند را مشا مشاهده تندى حدى \Leftrightarrow ت $\mathrm{f}_{\mathrm{D}}=m g$ مى كنيد.
 باشد، نيروى مقاومت هوا از نيروى وزن بزرگت (f
 وضعيت مشاهده مىكنيد:

جسم با تندى بيشتر از تندى حدى رو به يايين حركت مى كند (mg < f

$F_{\text {net }}=f_{D}-m g$

$$
\mathrm{a}=\frac{\mathrm{f}_{\mathrm{D}}}{\mathrm{~m}}-\mathrm{g}
$$

حركت كندشونده

جسم با تندى كمتر از تندى حدى رو به (mg>f

$\mathrm{F}_{\text {net }}=\mathrm{mg}-\mathrm{f}_{\mathrm{D}}$
$\mathrm{a}=\mathrm{g}-\frac{\mathrm{f}_{\mathrm{D}}}{\mathrm{m}}$
حركت تندشونده

جسم رو به بالا حركت مىكند

$\mathrm{F}_{\text {net }}=\mathrm{mg}+\mathrm{f}_{\mathrm{D}}$
$a=g+\frac{f_{D}}{m}$
حركت كندشونده

 (بركرفته از كتاب درسى)

(Y
/ V / O
() () بالا

V/a (r
$f_{D}>m g$ كا است، نيروى خالص و شتاب حترباز روبه بالا است: $\mathrm{F}_{\text {net }}=\mathrm{ma} \Rightarrow \mathrm{f}_{\mathrm{D}}-\mathrm{mg}=\mathrm{ma} \Rightarrow q_{\circ} \cdot-9_{0}=9_{0} \mathrm{a}$ $\Rightarrow \mathrm{a}=\Delta \mathrm{m} / \mathrm{s}^{r}$

 (و و v,

$$
\begin{array}{ll}
\mathrm{v}_{1}^{\prime}<\mathrm{v}_{r}^{\prime} \cdot v_{1}=v_{r}(r & \mathrm{v}_{1}^{\prime}>\mathrm{v}_{r}^{\prime} \cdot v_{1}=v_{r}() \\
\mathrm{v}_{1}^{\prime}=\mathrm{v}_{r}^{\prime} \cdot v_{1}<\mathrm{v}_{r}(r & \mathrm{v}_{1}^{\prime}=\mathrm{v}_{r}^{\prime} \cdot v_{1}>\mathrm{v}_{r}(r
\end{array}
$$

شا

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{ma} \Rightarrow \mathrm{mg}-\mathrm{f}_{\mathrm{D}}=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{g}-\frac{\mathrm{f}_{\mathrm{D}}}{\mathrm{~m}}
$$

 $m_{Y}>m_{1} \Rightarrow a_{Y}>a_{1} \Rightarrow v_{Y}^{\prime}>v_{1}^{\prime}$ شتاب بزرگترى

نيروى كشش طناب (T)

وقتى طناب متصل به جسمى , اا مطابق شكل مى آلشيم، طناب جسمر را با نيرويى مى كشد كه جهت آن از جسم به سمت بيرون و در راستاى طناب است. چون در اين حالت طناب تحت كش كشر قرار دارد، به اين نيرو، نيروى كشش طناب گَفته مىشود و آن را با T نشان مىدهند. :
(1) اتر جرم نخ يا كابل ناحيز باشد، اين نيرو در كل نخ يا كابل مقدار ثابتى خواهد داشت. (1) جهت نيروى كشش در نخى كه به دو نقطه محكم بسته شده است، همواره به سمت وسطل نخ مى مباشد.

نيروى كشسانى فنر (Fe)

ثابتفنر (N/m)

"

 مقابل (قانون هوكى) به دست مى آيد: (N) نيروى كششسانى فنر
 = نيروى كشسانىاى كه فنر به جسم متصل به آن آن وارد مى مكند، همواره به سمت

 كنيد كه شيب اين خط برابر با ثابت فنر است و هر چقدر ثابت فنر بزرگّتر باشد، اين شيب، بيشتر و فنر سختتر است.
 Eniw

$$
100(4 \quad \text { D. (r } \quad \text { l. (r } \quad \Delta(1)
$$

دو موج مكانيكى A و B در يك محيط كشسان منتشر مى شوند. اكر بسامد موج A A برابر
Exir
 (: 90 (9)

$$
r \cdot \frac{1}{r}\left(r \quad 1 \cdot \frac{1}{r}<r\right.
$$

است؟ (به ترتيب از راست به چی)
$r \cdot \frac{1}{r}(r$
$r \cdot \frac{1}{r}(r$

1. $\frac{1}{4}(1$
 بك $\mathrm{V}: \frac{\lambda_{\mathrm{A}}}{\lambda_{\mathrm{B}}}=\frac{f_{\mathrm{B}}}{f_{\mathrm{A}}} \xrightarrow{f_{\mathrm{A}}=F_{\mathrm{B}}} \frac{\lambda_{\mathrm{A}}}{\lambda_{\mathrm{B}}}=\frac{1}{\mathrm{~F}} \quad$: \quad : $\lambda=\frac{\mathrm{V}}{f}$:

موج عرضى سينوسى
(1) طناب بلند كشيدام را ادر نظــر بتيريـد

 مطـابق شـكل مـوج عرضــ إيوسـتـهالى در طناب ايجاد مىشود كه به آن موج سينوسى (1) شكل طناب در هر لحظه از زمان انتـشار موج را شكل موج يا نقش موج مى مويند.
 تناوب)، دو اتفاق مـمه مى مىافتد: الف) موج به اندازء يك طول موج (ג) بیشروى مى كند. ب) هر ذره از محيط انتشار موج (طناب) يك نوسان كامل انجام مىدهد. (به عنوان مثال به حركت ذرء M ، وضعيت نوسانى كاملاُ مشابهى دارند.
هـ هيشروى موج (

 بسامدزاويطاى (rad/s) رابطةُ زير بهدست مىى آيد:

دامنمؤوج (m)

تعيين جهت حركت ذرات محيط انتشار موج

جهت حركت موج

مىدانيم كه موج به سمت راست حركت مىكند و قله از سمت حیپ به B مىرسل، در نتيجه موج بايد

$$
\text { حركت كند: } \Delta x=\frac{r \lambda}{r}
$$

$\frac{\Delta \mathrm{x}}{\lambda}=\frac{\Delta \mathrm{t}}{\mathrm{T}} \Rightarrow \frac{r \frac{\lambda}{r}}{\lambda}=\frac{\Delta \mathrm{t}}{\mathrm{T}} \Rightarrow \Delta \mathrm{t}=\frac{r}{r} \mathrm{~T} \xrightarrow{\mathrm{~T}=\frac{1}{r \Delta} \mathrm{~s}} \Delta \mathrm{t}=\frac{r}{1 \ldots 0} \mathrm{~s}$

پاشندگی نور

ضريب شكست هر محيطى به جز خلاء به طول موج نور بستكى دارد و عموماً ضر يب شكست يكـ محيط معين براى طول مـوجهـاى كوتـاهتـر (بسامد بيشتر)، بيشتر است. براى طيف نور مرئى در يك محيط معين (غير از خلأ)، نور قرمز كمترين ضريب شكست (كمترين انحراف) و ور اري نور بنفش بيشترين ضريب شكست (بيشترين انحراف) را دارد.

پرسشهاى چهارگَزينهای

 اين حركت چند راديان بر ثانيه است؟
$r \pi(f$
$\pi\left({ }^{(}\right.$
$\frac{\pi}{r}(r$
$\frac{\pi}{r}(1)$
Y. د. در حركت نوسانى هماهنَع ساده، در كداميك از موارد زير، مكان نوسانكننده الزاماً منفى است؟ (رياضى 90)
() سرعت مثبت باشد. Y) شتاب مثبت باشد. Y (Y) سرعت منفى باشد. (Y) شتاب منفى باشد. r. جسمى به جرم rkg حركت هماهنگ ساده با دامنه (ram/s

$$
\text { D. (F ra r } \quad \Delta(r \quad r / \Delta()
$$

ه. نوسانعرى در لحظهُ
 (رياضى AK)

$$
\operatorname{ir}(\sqrt{r}-1) \frac{A}{T}\left(r \quad \frac { 1 r (\sqrt { r } + 1) } { r } \frac { A } { T } \left(r \quad \frac { 1 r (\sqrt { r } - 1) } { r } \frac { A } { T } \left(r \quad 1 r(\sqrt{r}+1) \frac{A}{T}(1)\right.\right.\right.
$$

 (Av (رياضى خارج) تندى نوسانگر چند متر بر ثانيه است؟
1/9 (f
T/r (r
./人 (Y
-/f()

پاسخنامه تشریحى

＂Y＂》
 10 نوسان كامل انجام داده است（n（n）．
$\omega=\frac{r \pi}{\mathrm{~T}} \xrightarrow{\mathrm{~T}=\frac{\mathrm{t}}{\mathrm{n}}} \omega=\frac{r \pi}{\frac{\mathrm{t}}{\mathrm{n}}}=\frac{\mathrm{n} \times r \pi}{\mathrm{t}}=\frac{1 \Delta \times r \pi}{\varphi_{0}}=\frac{\pi}{\mathrm{r}} \mathrm{rad} / \mathrm{s}$
《r＂
در حركت هماهنتُ ساده، هميشه علامت a و x قرينه يكديترند در نتيجه وقتى شتاب مثبت باشد، مكان نوسانگر حتماً منفى است．

$v_{\text {max }}=A \omega \xrightarrow[A=\Delta \mathrm{cm}=\Delta \times 10^{-r} \mathrm{~m}]{\mathrm{v}_{\max }=\Delta / \tau \Delta \mathrm{m} / \mathrm{s}} 0 / r \Delta=\Delta \times 10^{-r} \times \omega \Rightarrow \omega=\Delta \mathrm{rad} / \mathrm{s}$
$F_{\max }=m A \omega^{r} \xrightarrow[\omega=\Delta \mathrm{rad} / \mathrm{s}]{\mathrm{m}=r \mathrm{~kg}, \mathrm{~A}=\Delta \times 10^{-r} \mathrm{~m}} \mathrm{~F}_{\max }=r \times \Delta \times 10^{-r} \times \Delta^{r}=r / \Delta \mathrm{N}$
«1》＂F
 جابه $\frac{T}{r r}=\frac{1}{r_{0} 0} \Rightarrow T=\frac{1}{r \Delta} s, \quad f=\frac{1}{T}=\frac{1}{\frac{1}{r \Delta}}=r \Delta \mathrm{~Hz}$

$|\Delta x|=\left|x_{r}-x_{1}\right|=\frac{\sqrt{r}}{r} A-\frac{A}{r}=\frac{A}{r}(\sqrt{r}-1)$
$v_{a v}=\frac{\frac{A}{r}(\sqrt{r}-1)}{\frac{T}{r f}}=1 r(\sqrt{r}-1) \frac{A}{T}$
سرعت متوسط ，ا از رابطة

$\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \xrightarrow[\mathrm{m}=r \times 10^{-r} \mathrm{~kg}]{\mathrm{k}=\mathrm{rrN} / \mathrm{m}} \omega=\sqrt{\frac{r r}{r \times 10^{-r}}}=\sqrt{190 .} \Rightarrow \omega=f \cdot \mathrm{rad} / \mathrm{s}$
حالا با استفاده از $\mathrm{v}_{\text {max }}=\mathrm{C}$ ، تندى بيشينه را محاسبه مىكنيم：
$v_{\text {max }}=A \omega \xrightarrow[\omega=\uparrow \cdot \mathrm{rad} / \mathrm{s}]{\mathrm{A}=\mathrm{s} \mathrm{m}=\mathrm{m} \times 0^{-r}} \mathrm{~V}_{\max }=\mathrm{F} \times 10^{-r} \times \mathrm{F}_{0}=1 / \varepsilon \mathrm{m} / \mathrm{s}$

رياضىنامه

فرم كلى فرمولهاى مقايسهاى

كميتى را در نظر بكّيريد كه از ضرب و تقسيم حند متغير مختلف به دست مى آيد. براى بهدست آوردن

 توان هر متغير را بايد اثر دهيمه. تذكر: اعداد ثابت در فرمولهايى مقايسهاى بیتيأثير هستند. حند مثال فيزيكى:

بردارى مانند شكل مقابل را در نظر بكيريد، براى نمايش اين بردار به صورت $\overrightarrow{\mathrm{F}}=\mathrm{F}_{\mathrm{x}} \overrightarrow{\mathrm{i}}+\mathrm{F}_{\mathrm{y}} \overrightarrow{\mathrm{j}}$
$\mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta, \mathrm{F}_{\mathrm{y}}=\mathrm{F} \sin \theta, \tan \theta=\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{F}_{\mathrm{x}}}$

D اندازء (المر نظر بكيريد. جمع (برايند) و تفريق اين دو برار $\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \vec{i}+\left(A_{y}+B_{y}\right) \vec{j}$

را به صورت زير مىتوان نوشت: $\vec{A}-\vec{B}=\left(A_{x}-B_{x}\right) \vec{i}+\left(A_{y}-B_{y}\right) \vec{j}$
() (بردار برايند را با

$R=\sqrt{\vec{A}}$
$R=A-B$
$R=A+B$
اندازء برايند

قضيهٔ فيثاغورس

 به c= به دست میآيد. $c=\sqrt{a^{r}+b^{r}}$
":'
(1) دو سرى عدد معروف فيثاغورسى داريم: Ir الف $(r, r)=\sqrt{r^{r}+r^{r}}=\Delta \quad, \quad(\Delta, i r)=\sqrt{\Delta^{r}+I r^{r}}=1 r$

ا. براى اندازهگيرى طول يك جسم با يك خطكش ميلىمترى با هنج مرتبهُ اندازهگيرى، نتايج زير

مرتبهٔ هنجمى	مرتبهٔ جهارم	مرتبئ سوم	مرتبهٔ دوم	مرتبهٔ اول
F./ 0 mm	$\mathrm{Fl} / \mathrm{mm}$	$\mathrm{Fq} / \mathrm{Fmm}$	F./1mm	$\mathrm{Fr} / \mathrm{Amm}$
F1/1 (f		$\Delta(r$	rr/qur	$\mathrm{fr} /$

 قاعده́ آن، نصف طول ضلع مكعب است. اتر جرم اين دو با هم برابر باشد،

$$
r\left(F \quad f \left(r \quad \frac { 1 } { f } \left(r \quad \frac{r}{f}()\right.\right.\right.
$$

 چند متر بالاتر میرفت؟ (g=1.m/s

$$
\begin{array}{llll}
\text { rol } & 10(r & 10(r & 0()
\end{array}
$$

λ (F
$9(Y$
F (Y
r(1)
 برابر شعاع قاعده́ استوانه A باشد، فشار حاصل از استوانهُ A هند برابر فشار حاصل از استوانه B است؟

V انبساط طولى اين تير آهن در SI ، كدام است؟

$$
\lambda \times 10^{-\Delta}\left(\begin{array}{r}
r
\end{array} \quad 9 \times 10^{-\Delta}\left(r \quad 1 / \varepsilon \times 10^{-\Delta}\left(r \quad 1 / \zeta \times 10^{-\Delta}(1)\right.\right.\right.
$$

^. تبديل بخار به مايع، جامد به بخار و مايع به بخار را بهتر تيب چهه مىنامند؟

 نوسانگّر در SI كدام است؟ $x=0 / \circ$ of $\cos \Lambda_{0} t\left(\& x=0 / \circ \Delta \cos \Lambda_{0} t\left(r x=0 / \circ f \cos \Delta_{0} t\left(r x=0 / \circ \Delta \cos f_{0} t(1\right.\right.\right.$

 $\% \mu \pi^{r}(r$ - $1 . r \pi^{r}$ (
$.1 . \wedge \pi^{r}$ (\uparrow
$.1 .9 \pi^{r}(r$

$$
\begin{array}{llll}
r_{0}(f & \Lambda_{0}(r & F_{0}(r & r_{0}()
\end{array}
$$

$$
r \cdot(f \quad r a(r \quad r 0(r) 10()
$$

محيط A باشد، كدام گز ينه درست است؟ ()) تندى موج در محيط B

$$
r g \Delta(r \quad r g f(r \quad \lg r(r \quad \operatorname{lr} \quad \text { r }
$$

 (Y) هنگام گسيل الكترون بار هسته به اندازء (Y r r) هنتام گّ f (Y) هنگام گیسيل گاما، ثوزيترون و الكترون، بار هسته ثابت مىماند.

پاسخنامه آزمون جامع

《F» "
كافى است ميانگين اعداد بهدست آمده بهجز نتيجه مرتبه سوم را حساب كنيم. (زيرا نتيجه مرتبه سوم $\frac{\left.f r / \lambda+f_{0} / \Lambda+f\right) / 0+f_{0} / \Delta}{f}=f / / / \mathrm{mm} \quad$ اختلاف زيادى با بقية نتيجهگيرىها دارد.
 (انديس ا براى مخروط و انديس r ب براى مكعب به كار برده مىشود): $m_{1}=m_{r} \xrightarrow{m=\rho V} \rho_{1} V_{1}=\rho_{r} V_{r} \Rightarrow \rho_{1} \times \frac{1}{r} \pi R^{r} h=\rho_{r} \times a^{r}$
$\xrightarrow[R=\frac{a}{r}]{\mathrm{h}=\mathrm{a}} \rho_{1} \times \frac{1}{r} \pi\left(\frac{\mathrm{a}}{r}\right)^{r} \times \mathrm{a}=\rho_{r} \times \mathrm{a}^{r} \Rightarrow \frac{\rho_{1}}{\rho_{r}}=r$
طبق اصل پايستگى انرثى برای حالت اول كه مقاومت هوا وجود دارد، مىتوان نوشت:

$$
\begin{aligned}
& E_{1}-E_{f}=E_{r} \Rightarrow \frac{1}{r} m v_{1}^{r}-1 \cdot=m g H_{1} \\
& \Rightarrow \frac{1}{r} \times \frac{r}{10} \times r_{0}^{r}-1 \cdot=\frac{r}{10} \times 1 \cdot \times H_{1} \Rightarrow H_{1}=r \cdot m
\end{aligned}
$$

طبق چايستگى انرثى در حالت دوم كه مقاومت هوا وجود ندارد، مىتوان نوشت: $E_{1}=E_{Y}$

$$
\begin{aligned}
& \frac{1}{r} m_{v_{1}}{ }^{r}=m_{\mathrm{g} H_{r}} \Rightarrow \frac{1}{r} \times r_{0}{ }^{r}=10 \times H_{r} \\
& \Rightarrow \mathrm{H}_{\mathrm{r}}=r \Delta \mathrm{~m} \\
& \text { بنابراين در نبود مقاومت هوا، ارتفاع اوج } \mathrm{H}_{Y}-H_{1}=\Delta m \text { بالاتر از هنگّامى } \\
& \text { است كه مقاومت هوا وجود دارد. } \\
& \text { «r» }
\end{aligned}
$$

$\sin r \cdot{ }^{\circ}=\frac{h}{d} \xrightarrow{d=1 m} \frac{1}{r}=\frac{h}{\mathrm{l}} \Rightarrow \mathrm{h}=. / \Delta \mathrm{m}$ تغيير ارتفاع جسمر را محاسبه مىكنيما

h

$$
\begin{equation*}
\mathrm{E}_{1}=\mathrm{U}_{1}+\mathrm{K}_{1}=\frac{1}{r} m v_{1}^{r}=\frac{1}{r} \times r \times r^{r}=19 \mathrm{~J} \tag{1}
\end{equation*}
$$

$E_{Y}=U_{r}+K_{Y}^{\prime}=m g h=r \times 1 \cdot x \cdot / \Delta=1 \cdot J$
با استفاده از رابطه
$\mathrm{W}_{\mathrm{f}}=\mathrm{E}_{\mathrm{r}}-\mathrm{E}_{1}=1 .-19=-9 \mathrm{~J}$
 $\mathrm{W}=\mathrm{Fd} \cos \theta \Rightarrow \mathrm{W}_{\mathrm{f}}=\mathrm{f}_{\mathrm{k}} \cdot \mathrm{d} \cos \backslash \mathrm{N}^{\circ}{ }^{\circ}$ تعريف كار داريم:
$\xrightarrow[\mathrm{d}=1 \mathrm{~m}, \cos 1 \mathrm{~A}_{0}{ }^{\circ}=-1]{\mathrm{W}_{\mathrm{f}}=-9 \mathrm{~J}}-9=\mathrm{f}_{\mathrm{k}} \times 1 \times(-1) \Rightarrow \mathrm{f}_{\mathrm{k}}=9 \mathrm{~N}$

حجم استوانه از رابطة
 ابتدا نسبت مساحتهاى قاعدة استوانهها را بهدست مى آوريم: $\frac{\mathrm{A}_{\mathrm{A}}}{\mathrm{A}_{\mathrm{B}}}=\frac{\pi \mathrm{r}_{\mathrm{A}}^{r}}{\pi \mathrm{r}_{\mathrm{B}}^{r}}=\left(\frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}\right)^{r} \xrightarrow{\mathrm{r}_{\mathrm{B}}=r \mathrm{r}_{\mathrm{A}}} \frac{\mathrm{A}_{\mathrm{A}}}{\mathrm{A}_{\mathrm{B}}}=\frac{1}{r}$

