

مولكولبداع اطلاعات

DNA DNA مطمئنم شمهٔ شما اسمين و مىدونين كه ويخگىهاى ما توسط اطلاعات ايجاد مىشن. چقدر جالبه كه مولكولى كه ما حتى نمىتونيم با چشمامون ببينيمش، توى تكتك لحظات زندكى ما تأثيركذار هست. اما حقيقت اينه كه كنترل ما روى DNA بيشتره. اين ما هستيم كه باكارهامون مىتونيم باعث بشيم از خنمون در آينده بهعنوان يه خن خوب ياد بشه يا اينكه اصلاً

فراموش بشيم.
در اولين فصل كتاب دوازدهم، با مباحث مربوط به ساختار و عملكرد نوكلئيكاسيدها و پروتئينها آشنا مىشيم. اولين كفتار كتاب، با صحبت دربارة ساختار DNA و نحوهٔ كشف اون شروع ميشه و بعد در كفتار (Y)، راجع به همانندسازى و تكثير DNA صحبت مىكنيم. در نهايت، T آخرين كفتار فصل راجع به پروتئينهاست. يه ويخگى جالب اين فصل اين هست كه هرچى به آخر فصل نزديكتر مى شيم، اهميت مباحث بيشتر ميشه و احتمال سؤال اومدن از اونا بيشتر ميشه. البته، دليل مهممتر اهميت بالاى اين فصل ، نه تعداد سؤالات اون در كنكور بلكه پايهاى بودن مباحث اين فصل براى كليه فصلهاى بعدى کتاب دوازدهم هست. پس براى اينكه بتونين يه نتيجةٔ خيلى خوب در كنكور بكيرين،
از همين الان با جديت شر ع كنين:
"

ذ Inoa~p

 هر يك از ياختههاى بدن ما، مجموعهاى از ويزگى ها را دارند كه باعث تمايز آنها از از ساير ياختههاى

 صورت غيرارادى منقبض مىشوند و در عملكرد اندامهاى داخلى بدن، مثل معده و روده، نقش دارند.

توانايى	اندازه	و.يزگى ظاهرى	نوع ياختهٔ ماهيحֶهاى
انقباض ارادى و حركتدادن استخوانها	نسبتاً بزرگ	استوانهاىشكل و مخطط	ياختهٔ ماهيحچهٔ اسكلتى
انقباض غيرارادى و مؤثر در عملكرد اندامهاى داخلى	نسبتاً كوچک	دوكى	ياختلٔ ماهيچهُ صاف

 نوع دوم، با ظاهرى كاملاً متفاوت، به تعداد خيلى كمتر ديده مىشوند و ترشح عامل سطح فعال (سورفاكتانت) را برعهده دارند و با اين كار، كشش سطحى مايع درون

كار يكساني انجام مىدهد. اطلاعات لازم براى زندگى ياخته در مولكولهاى دِنا ذخيره شده است.
 مولكولهاى دِناى افراد، از بيمارىهاى ارثىاى خبردار مىشوند كه ممكن است در آينده به سراغ انسان بيايد. ذخيرهٔ اطلاعات ور اثتى: در يوكاريوتها' (مثل جانوران) اطلاعات و دستورالعملهاى لازم براى هدايت ياخته، درون هسته قرار دارند. در واقع، DNAى درون هسته، مولكولى است كه به عنوان ذخيرهكنندهٔ اطلاعات وراثتى در همةٔ جانداران عمل مىكند. ارائٔ دستورالعملهاى متفاوت توسط DNA ياختههاى

ساختار مادءٔ وراثتى در هسته

مختلف"، سبب بروز ويزگى هاى متفاوتى در ياختههاى بدن مىشود.
 كه در ساختار آنها، DNA و پروتئين مشاركت مىكنند.
 فشردگى مادةٔ وراثتى هسته، كمتر و به صورت تودهاى از رشتههاى درهم است كه به آن، كروماتين (فامينه) مىكويند. هر رشتؤ كروماتين، از واحدهاى تكرارى بهنام نوكلئوزوم (هستهتن) تشكيل مىشود كه در آن، مولكول DNA حدود 「 دور اطراف ^م مولكول پروتئينى بهنام هيستون پیچیده است. نَنكه مــادة وراثتـى هسـتـه، در تمـام مراحـل زندگَى ياختــه، باجز تقسـيمه، به صورت كروماتين اسـت. نَّنَه در همأ ياختههاى پيكرى و هستهدار بدن، DNAهاى مشابه وجود دارند؛ براى مثال، نوع اطلاعات رُنتيكى موجود در DNAى ياختههاى پوششى كبد و اطلاعات

سؤَال آيا در همؤ ياختهها (بهجز باكترىها")، دستورالعملهاى هدايتكنندهٔ ياخته درون هسته قرار دارند؟ جواب منفى است؛ حون بعضى از ياختههاى يوكاريوت فاقد هسته هستند، مثل ياختههاى خونى قرمز بالغ و ياختههاى آوند آبكشى. حال سؤل ديگَرى كه به وجود مى آيد اين است كه اطلاعات لازم براى زندگى اين ياختهها در كجا قرار دارد؟ در واقع، اين ياختهها نيز در ابتدا هستهدار بودهاند و با كمك اطلاعات موجود در كروموزومهاى هسته، ويزگیىهاى مور د نياز خود را كسب كردهاند و در نهايت، طى مراحل بلوغ، هستئ خود را نيز از دست دادهاند. همين از دست

دادن هسته نيز در راستاى انجام بهتر وظايف اين ياختهها بوده است.

مراحل بلوغ گويحهُ قرمز

f هـَالِ از تقسـيم ياختههــاى بنيــادى ميلوئيدى در مغــز قرمز اسـتخوان، گويحههاى

 گويحـــُ قرمـز بالغ بـه وجــود مى آيد.

ا- پروكاريوتها شامل همأ باكترىها هستند. جانداران ديگر شامل جانوران، گياهان، قارجها و و آغازيان، يوكاريوت هستند.
 زنه هاى استفاده شده در هر ياخته است.
 مى باشد. بعداً بيشتر راجع به پروكاريوتها و يوكاريوتها هـا صحبت مى يكنيهم.

انتقال اطلاعات ور اثتى در تقسيم ميتوز

انتقال اطلاعات وراثتى: اطلاعات وراثتى مىتوانند از ياختهاى به ياختهٔ ديگًر و از نسلى به نسل ديگَر منتقل شوند. در تقسيم ياختهاى (مثل ميتوز)، اطلاعات وراثتى از ياختئ مادرى به ياختههاى دخترى منتقل مىشود. در فرايند توليدمثل نيز اطلاعات وراثتى از يك نسل (مثلاً پدر و مادر) به نسل ديگر (فرزندان) منتقل مى شود.

همانندسازى شده بود، تقسيم مىشود و به ياختههاى جديد مى S
 گامتها برقرار مىكنند و ويزگگىهاى هر يكى از والدين توسط دستورالعملهايى كه در DNA موجود در گامتها قرار دارد، به نسل بعد منتقل مىشورد

كشف ماده وراثت (1) : آزمايشهاى اوليه توسط گريغيت

گريفيت يك باكترىشناس بود كه سعى داشت واكسنى عليه آنفلوانزآ توليد كند. از قْفا، اون

 كه تبادل گازهاى تنفسى بين خون و هواى دمى انجام مى شود.
 ويروس، به ششها حمله مىكند و سبب مىشود دستكَاه ايمنى بيش از حد معمول فعاليت كند كه به توليد انبوه و بيش از اندازء لنفوسيتهاى T مىانجامدا

حملئ لنفوسيتهاى T به ياختههاى ششها و ايجاد آسيب بافتى، مى تواند نهايتاً منجر به مرگَ شود.

بدن، ياختههاى خاطره پديد مىآيد. به همين علت، ايمنى حاصل از واكسن را ايمنى فعال مىنامند.

جلوكيرى از انتشار ميكروبها و تسريع بهبودى مىانجامد.
 ا- دانشمندى بهنام فردريك ميشر، DNA را ششف كرد. او توانست DNA را از هستؤ ياختههاى بدن انسان و اسپرم ماهى استخراج كند. ميشر، اين ماده را نوكلئيكاسيد به معناى اسيد هستهاى ناميد؛ چون از هسته (Nucleus) استخراج شده بود و خاصيت اسيدى ضعيفى داشي داشت. Influenza - أَنفلوانزا، نوعى بيمارى ويروسى است كه توسط ويروس آنفلوانزا (Influenza Virus) ايجاد میشود.

 كلى مطالب قبل از آزمونهاى آزمايشى و كنكور تهيه شدهاند. لطفاً براى توضيحات بيشتر، حتماً به (راهنماى مطالعأكتاب) در صفحات ابتدايى مراجعه كنيد.

\%

(HIV) ويروس آنفلوانزاى پرندكان، ويروس آنفلوانزا، ويروس نقص ايمنى انسان لشا لشا 1- عدم وجود حيات در ويروسها [كفتار 1 ـ فصل ا دهمم] ويروسها، V ويزگّى مشترى حيات را ندارند و بنابراين، زنده محسوب نمىشوند.
 ץ- بيمارىزايیى ويروسها در گياهان [كفتار 1 ـ فصل ا دهم گیاهان به بيمارىهاى گياهى ويروسى، باكتريايى و قارچى و نيز براى رويارويى با حشرات آفت، از مهندسى رنتيكى استفاده مى شود.「- انتقال ويروس ها در گياهان [كفتار مىتوانند از فضاى پاسمودسم به ياختههاى ديگر منتقل شوند (مسير سيمهِاستى). منافذ پالاسمودسم آنقدر بزرگى است كه پروتئينها، نوكلئيكاسيدها و حتى وِيروسهایی كياهى از آن عبور مىكنند.个- ياختههاى كشندهٔ طبيعى و ويروسها [فعاليت مىكنند و ياختههاى سرطانى و آلوده به ويروس را نابود مىكند. اين كار، با ترشح پرفورين و آنزيم القاكنندهٔ (مرگى برناماريزىشدهٔ ياختهاى") صورت مىگيرد.

, عر غشاى ياخته هدف
إيجاد میكند.

با با برونرانى آزاد مىكنند.

ه- ايتترفرون نوع I و و يروس [كفتار r _ فصل ه يازدهم] اينترفرون نوع I، از ياختههاى آلوده به ويروس ترشح مىشود و علاوهبر ياختهٔ آلوده، بر

ياختههاى سالم مجاور هم اثر مىكند و آنها را در برابر ويروس مقاوم مىكند.
 و اقدام به خنثى سازى ويروس كند. ويروس خنثى شده، توسط بيعانهخوارها بلعيده و هضم مى شود. نَّته خنثى سازى ويروس توسط پادتن، ميزان فاكوسيتوز آن را افزايش مى ایهد. Y Y Y لنفوسيت T و ويروس ها [كا [نابود مىكند. اين كار، با ترشح پرفورين و آنزيم القاكنندءٔ ((مرگَ برنامهر يزىشدهٔ ياختهاى) صور ت مىكيرد. ^- نقص ايمنى اكتسابى (ايدز) [كفتار

لنفوسيتهاى B مىانجامد. ويروس HIV مىتواند بين 9 ماه تا ها ال سال نهفته باقى بماند و بيمارى ايجاد نكند. HIV بسيار ريز است.
 خودروها، مواد غذايی دودىشده مثل گوشت و ماهى دودى، بعضى ويروسها، قرص ضدباردارى، نوشيدنى هاى الكلى و دخانيات از عوامل مـمى سرطانزايیى هستند.
 كه نتيجهٔ آن، مرگى ياختههاى آلوده و قطع ارتباط آنها با بافتهاى سالم است. در نتيجه، ويرووس نمىتواند در بافتهاى سالم

1 - توليد ايتترفرون با زيست فناورى [كفتار r ـ فصل V دوازدهم] به كمك فرايند مهندسى پروتئين، توالى آمينواسيدهاى اينترفرون توليدشده در مهندسى رنتيى را طورى تغيير مىدهند كه يكى از آمينواسيدهاى آن با آمينواسيد ديگرى جايعززين مىشود. اين تغيير، فعاليت ضد ويروسى اينترفرون ساختهشده را به اندازء پروتئين طبيعى افزايش داده و همرچنين آن را پایدارتر مىكند. r ا دارد. واكسنهاى توليدشده با روش مهندسى زثنتيك، حنين خطرى ندارند. در اين روش، ثن مربوط به آنتىزن سطحى عامل بيمارىزا به يكى باكترى يا

 شوند و سپس زن را درون ويروس جاسازى كرد. ويروس تغييريافته مىتواند با ياختهٔ بيمار تركيب شود و باعث تغيير ياختههاى بيمار از لحاظ رزنتيكى شود. بدينترتيب، ياختههاى تغيير يافتئ زنتيكى مى توانند در بدن فرد بيمارى، پروتئين يا هور مون موردنظر را توليد كنند.

 (الـى وِيرس تشخيص داده مىشود. تشخيص زودهنگام آلودگى با ويروس ايدز اهميت زيادى دارد؛ زيرا، باعث مىشود كه بدون اتلاف وقت اقدامات درمانى لازم و اقدامات كنترلى براى جلوكيرى از انتقال ويروس به ساير افراد صورت كيرد انيرد.

ويزگیى ها و انواع باكترى استرپپتوكوكوس نومونيا گَفتيم كه باكترى استر پتوكوكوس نومونيا، عامل بيمارى سينهيهِلو است. اما بايد بدانيم كه اين باكترى، دو نوع مختلف دارد كه فقط يكى از آنها بيمارى بزاست : ا- نوع كپسولدار: بيمارىزاست و در موش [و انسان]، سينهه پهلو ايجاد مىكند. r- نوع بدون كچسول: غير بيمارىزاست و نمى تواند بيمارى سينههيهلو را ايجاد كند. نَّته مىتوان كفت كه عامل بيمارى ذاتالريه، نوع كپسولدار باكترى استرپیتوكوكوس نومونيا است و نوع بدون كيسول، توانيى بيمارىزايى ندارد.

4 anules

نوع گیسولدار و بدون كپسول استریتوكوكوس نومونيا

نتيجهٔ تزريق به موش	توانايى بيمارىزايى	كيسول	غشا، سيتوپֵلاسم و	نوع باكترى
ايجاد بيمارى	دارد	دارد	دارد	كپسولدار
عدم ايجاد بيمارى	ندارد	ندارد	دارد	بدون كֶسل

! بـيشتر نخوانيد
سؤّ ال منظور از كيسول در باكترى چیيست؟

 فقط براى اطلاع بيشتر فورتون هست. اكه فواستين، نمونينش. در اطراف يك سلول باكترى، ممكن است ديوارء ياختهاى و كپسول وجود داشته باشد. در واقع، كپسول نوعى پوشش

 نوع كپسولدار باكترى استریتوكوكوس نومونيا، بتواند از خود در برابر دستگاه ايمنى حفاظت و ايجاد بيمارى كند. اما نوع بدون كپسول، توسط دستگاه ايمنى از بين مىرود و در نتيجه، نوع بدون كپسول نمىتواند بيمارىزايى كند.

 1 - تزريق باكترىهاى كپسولدار زنده
وضعيت موشها: موشها بيمار شدند و مردند. يافتههاى نمونُٔ خون محيطى: باكترىهاى كچسولدار زنده
 و موشها مردند.

نكّه باكترىهاى تزريقشده به خون موشها، مىتوانند خود را به ششها برسانند و در شش، بيمارىزايی كنند. نَنته علاوه بر كازهاى تنفسى، كربن مونواكسيد و نيكوتين (در سيكار)، باكترى استرپتوكوكوس نومونيانيا نيز مىتواند از ديوارئ مويرگَهاى خونى عبور كند.
r- تزريق باكترىهاى بدون كپسول زنده وضعيت موشها: موشها بيمار نشدند و زنده ماندند. يافتههاى نمونُٔ خون محيطى: باكترىهاى بدون كپسول در آزمايش دوم، گريفيت باكترىهاى بدون كپسول زنده را به موش تزر يق كرد. او مشاهده كرد كه موشها بيمار نشدند و زنده ماندند. بنابراين، نتيجه گرفت كه باكترىهاى بدون كپسول نمى توانند بيمارىزايى كنند. تشيّه باكترىهاى بدون كپسول زنده، نمىتوانند باعث ايجاد بيمارى شوند.

「- تزريق باكترىهاى كپسولدار كشتهشده با گرما وضعيت موشها: موشها بيمار نشدند و زنده ماندند. يافتههاى نمونئ خون محيطى: باكترىهاى كپسول دار كشتهشده

 بيمار نشرنر و زنره باقى مانرنر.
تشّيهُ كپسول بهتنهايى عامل بيمارىزايى نيست و باكترى كپسولدار كشتهشده، نمىتواند باعث ايجاد بيمارى شود. نَّهُ همانطور كه در شكل كتاب درسى مشخص است، تحت تأثير گرما، ساختار كپسول باكترى آسيب نمى بيند اما اجزاى درونى

باكترى آسيب مى بينند و خود باكترى مىميرد.
ץ
وضعيت موشها: موشها بيمار شدند و مردند.
يافتههاى نمونٔ خون محيطى: باكترىهاى كپسولدار كشتهشده، باكترىهاى بدون كپسول، تعداد زيادى باكترى كپسولدار زنده

وقتى كه باكترى هاى كیسولدار باگرماكشته مىشوند، محتويات درون آنها، شامل مولكولهاى درون آنها (مثل DNA و پروتئين)، آزاد مىشوند. باكترىهاى بدون كپسول زنده كه در مجاورت اين مواد قرار میگيرند، مىتوانند مادهٔ وراثتى باكترى كشتهشده را دريافت كنند و با استفاده از اطلاعات موجود در آن، آنزيمههاى لازم براى ساخت كپيسول را توليد كنند. بنابراين، در آزمايش گريفيت مشخص شد كه مادهٔ وراثتى مى تواند بين سلولها منتقل شود؛ باكترى بدون كپسول زنده، مادهٔ وراثتى باكترى كپسولدار كشتهشده را دريافت مىكند و با كمك اطلاعات موجود در آن، مى تواند كپسول' توليد كند. اما در آزمايشهاى كريفيت، مشخص نشد كه ماهيت مادة وراثتى

 نَّنه هر ياختهاى كه مى تواند تقسيم شود، اطلاعات وراثتى را به ياختههاى دخترى حاصل از تقسيم منتقل مىكند. اما، باكترىها مى توانند اطلاعات وراثتى

را از محيط اطراف خود نيز دريافت كنندّلـ

 اثرهاى خود را ظاهر كنند. اين روش، كه باعث انتقال صفت يا صفاتى از يك جاندار به جانداران ديگر مىشود، مهندسى رنشنناسى (زُنتيک) نام دارد.
 آزمايش گر يفيت، باكترى هاى بدون كپسولى كه كپسولدار شدند، ترازن محسوب نمىشوند؛ زيرا، هر دو نوع باكترىهاى استر پتوكوكوس نومونيا، مربوط به
 گیاهان زراعى منتقل كرد. مىتوان به اين طريق، بسيارى از سازوكارهاى مولكولى مربوط به سرعت رشد، كيفيت و كميت محصول را به شكل دلخواه
 باكترىهاى تثبيتكنندهٔ نيترورن خاى، نيترورن موردنياز در اختيار گياه قرار گيرد. بيئ نكات تركيبى انتقال ثرن بمونه براى فصل (V).

508:

خلاصئ مراحل آزمايش گر يفيت

نتيجه	يافتههاى نمونه خون	انتقال صفت	نتيجه	محتويات تزريقشده
باكترى كیسولدار بيمارىزاست	باكترىهاى كیسولدار زنده	-	مرگّ موشها	كیسولدار زنده
	باكترى هاى بدون كپّ	-	زنده ماندن موشها	بدون كیسول زنده
كچسول بهتنهايى عامل بيمارى نيست	باكترى هاى كپّ	-		كپسولدار كشتهشده
باكترىهاى بدون كیسول تغيير كردند + انتقال صفات به ياختهها	باكترىهاى كيسولدار كشتهشده + باكترى هاى بدون كیسول زینده باكترى هاى كچسولدار زنده	توليد كيسول و تغيير شكل باكترى	مرگّ موشها	كچسولدار كشتهشده + بدون كيسول زنده

[^0]
 فُب، نتيبهٔ هر نوع آسيب بافتى پ̂ى بور؟ بروز التهاب!
 جلوگيرى از انتشار ميكروبها و تسريع بهبودى مىانجامد. اما بهفى وقتا، همين. التواب (رحسرسازه! در واقع، حملئ باكترى كچسولدار به ششها باعث مى شود كه در ششها التهاب رخ دهد. در اثر التهاب، چركى توليد مى شود و اين مايع چركى، در ششها تجمع

 باكتريايى ظاهر مىشود. چرك شامل ياختههاى مرده و اجزاى ياختهاى، ميكروبهاى كشتهشده و نوتروفيلها
 (رسى برر/شته بشه. اما بر نيست برونين.

> مراحل التهاب: نمونهاى از یاسخ التهابى هنگام ورود باكترى به بدن ا- باكترى به بدن وارد مى شود.

「- محتويات ريزكيسههاى درون ماستوسيتها، با برونرانى آزاد مىشوند. هيستامين آمين (نقاط آبى) آزادشده، باعث گشادى رگَها و افزايش جريان خون و در نتيجه، تورم، قرمزى و گرمى مىیشود. ץ- پییههاى شيميايی ترشح شده توسط ديوارئ مويرگَها و فاگوسيتها (مثل ماستوسيتها)،

 مكمل فعال، به باكترىها متصل مى شوند.

ه- فاگوسيتهايى كه در بافت حضور دارند، علاوه بر توليد پيكهاى شيميایی، باكترىها را با فاگوسيتوز از بين مى برند.
 درشتخوار (ماكروفازها) مستقر شدهاند. اين ياختهها حركت مىكنند و باكترىها و مواد ديگر را با فاكوسيتوز نابود مىكنند. البته استرپتوكوكوس نومونياى
 نَّتهَ به علت آسيب ششها در سينه هِلو، ظرفيت تنفسى كاهش مى يابد و اكسيزنرسانى بافتها نيز با مشكل مواجه مى شود. لذا، فعاليتهاى وابسته به اكسيزن مثل تنفس ياختهاى مختل مىشود. مثلاً، در ماهيچهها تخمير لاكتيكى رخ مىدهد.

كشف مادهٔ وراثتع () : اثبات DNA به عنوان مادهٔ وراثت

 اثبات شر كه DNA همون ماره وراثتى است.

آزمايش اول ايورى؛ ثيروتئينها نقشح ندارند!

Fام 1: استخراج عصارئ (همؤ مواد درون) باكترىهاى كيسولدار كشتهشده
Fام ז: تخريب همةٔ پروتئينهاى موجود در عصارهٔ تهيهشده

ا- همعَنان به معناى همه و همگَى است. سعدى میگَه: (ادر دولت خداوندى همعَنان را راضى كردم مگر حسود را)،. منم باهاش موافقم!
Y- محيط كشت، ظرفى است كه در آن شرايط لازم براى رشد يك جاندار، مثل باكترى، فراهم شده است. باكترىها در محيط كشت قرار مىگيرند و با استفاده از مواد موجود در محيط كشت،

تّشٌ انتقال صفات صورت گرفت؛ باكترىهاى كپسولدار زنده در محيط كشت مشاهده شدند.

كشت باكترىهاى بدون كیسول زنده

 آزمايشهاى بعدى، تلاش براى تشخيص ماهيت اين ماده بود.

گام ا: استخراج عصارة باكترىهاى كيسولدار كشتهشده و تخريب همأ پروتئينهاى آن
Fام ז: قرار دادن مخلوط به دست آمده در يك سانتريفيوز (كريزانه)' با سرعت بالا
Fام זّ: جدا شدن مواد موجود در مخلوط به صور تلا لايهلايه
گام پْ: مواد موجود در هر لايه، به صورت جداگانه به محيط كشت باكترى هاى بدون كپسول اضافه شدند. تُتِيهِ انتقال صفات فقط توسط لايهاى انجام شد كه در آن، DNA وجود داشت.

$$
\begin{aligned}
& \text { © باكترى بدون كيسول زلده }
\end{aligned}
$$

اضافهكردن جدا گانه هر لايه به محيط كشت باكترى بدون كسول

© آزمايش سوم ايورى؛ شكدها برطرف شد! !
 Fام 1: استخراج عصاره باكترىهاى كپسول دار كشتهشده

Fًام זّ: اضافهردن آنزيم تخر يبكنندهُ يكى نوع مادهٔ آلى به هر قسمت از عصاره باكترى
 هريط كشت، ظرفى هست كه از اون، برای تَثير باكترى ها استغاره هيشه.
گام ه: بررسى محيطهاى كشت از نظر انتقال صفت (تبديل باكترىهاى بدون كپسول به باكترىهاى كپسولدار)
ا- سانتريفيورْ دستگاهى است كه از آن براى چرخاندن موراد با سرعت بالا استفاده مى شود. در اين دستگًاه محظظهاى كه مواد جداشدنى در آن قرار دارند، به كمك يك موتور به سرعت حول يك محور مى چرخد. در سانتريفيوز با استفاده از نيروى كَريز از مركز مواد را از يكديگَر جدا مىكنند.

وراثتى، مولكول DNA است ’. برای (رك بوتر، به شَّل نُّاه كنير.

سبز = يروتئينها
DNA = آبى
RNA = قرمز

RNA تجزيه كننده
DNA تجزيه كنتده تجزيه شد DNA
ها تجا تجزيه شدند RNA

> باكترى كيسولدار زنده
> ما
> صفت صـورت DNA DNمـمدرد. انتقال

انه هارهای . بهּ .

لولهٔ آزمايش	「 لولهٔ آزمايش	لولهٔ آزمايش	F لولهٔ آزمايش	
-	تخريبكنندهٔ پروتئين	RNA تخريبكنده	DNA تخريبننده	نوع آنز.يم تخريبكننده
+	-	+	+	پرو تئين
+	+	-	+	RNA
+	+	+	-	DNA
+	+	+	-	انتقال صفت
+	+	+	-	باكترى كچسول
عامل انتقال صفت DNA است و در غياب مولكول DNA، انتقال صفت صورت نمىیيرد.				نتيجه

ا- درسته اين واسه شما يه چیيز خيلى بديهى هست اما حتماً شنيدين كه میگن (معما چو حل گشت، آسان شود)،. اما خيلىها اعتقاد دارن كه از بين كسايى كه جايزء نوبل نگرفتن، ايورى يكى از لايقترين افراد بوده و در حقش ظلم شدها

بهطور كلى، نوكلئيكاسيدها را مىتوان در دو كروه قرار داد:

```
| - دئوکسىريبونوکلئيکاسيد (دِنا - DNA)،)
``` ץ- ر ريبونوكلئيكاسيد (رنِا ـ RNA)، نوعى نوكلئيكاسيد تكىرشتهاى كه بيشتر در فرايند پروتئينسازى مؤثر هستند.

\section*{نوكلئوتيدها؛ واحد سازندهٔ نوكلئيكاسيدها}

هر نوكلئيكاسيد، پِلىمرى' است كه از واحدهايى تكرارشونده (مونومر) بهنام نوكلئوتيد تشكيل شده است. سٍ نوكَئيكَ/سير، زمانى تشَيل هيشه كه تعرار

قند ه كربنى (ريبوز)

دئو كسى ريبوز زيا>ى نوكلئوتير با هع پيونر تشكيل برن. هر نوكلئوتيد، از سه بخش تشكيل شده است: ا - قند پنج كربنى: در نوكلئيكاسيدها، دو نوع مونوساكاريد پنج كربنى وجود دارد: الف) ريبوز: نوعى قند پنجكربنى است كه در ساختار مولكول RNA وجود دارد. ب) دئوكسىريبوز: اين قند پنجكربنى، در ساختار مولكول DNA رجود دارد و يكى اتم اكسيثن كمتر از ريبوز دارد. نَنته همانطور كه در شكل مشخص است، قند ريبوز و دئوكسىريبوز، ساختار حلقوى دارند و داراى يى حلقه مىباشند. ץ- يك تا سه تروه فسفات (فسفات متصل است. تعداد گروه فسفات نوكلئوتيد، مىتواند ا، 1 يا است)، سه گروه فسفات وجود دارد. نَّتهَ به دليل منفى بودن بار كروه فسفات، نوكلئيكاسيدها داراى بار منفى هستند. نَّته بين گروههاى فسفات نوكلئوتيدها، ييوند پانرزى وجود دارد. به همين دليل، هنگام هيدروليز مولكول ATP، انرثى آزاد مىشود.
 ץ- باز آلى نيتروزندار: گفتيم كه به يك سمت مولكول قند در نوكلئوتيد، گروه فسفات متصل مىشود. به سمت ديگر مولكول قند، باز آلى متصل است. بازهاى آلى را براساس تعداد حلقههاى آنها، به دو كروه تقسيم مىكنند: الف) پپير يميدينها، كه ساختار تكحلقهاى دارند و شامل تيمين (T)، سيتوزين (C) و يوراسيل (U) مىىاشند. نَنتّ در مولكول DNA، باز آلى تيمين وجود دارد ولى در RNA، بدجاى تيمين، يوراسيل وجود دارد. در واقع، ممكن نيست در يكى نوكلئيكاسيد هم باز آلى T وجود داشته باشد و هم U U U ب) پورينها، كه ساختار دو حلقهاى دارند و شامل آدنين (A) و گوانين (G) مىباشند. نَّته نوكلئيكاسيدها، خاصيت اسيدى دارند اما در ساختار آنها، مولكولهاى بازى (قليايى) نيز يافت مىشوند.
 كبد، با كربن دىاكسيد تركيب مىشود و به اوره (فراوانترين مادئ آلى دفعى نيتروثندار ادرار) تبديل مى شود.

و انحلال پذيرى زيادى در آب ندارد.
ا- پلىمر، تركيبى شامل تعداد زيادى واحدهاى كموبيش يكسان است. به هر يك از اين واحدها، مونومر گفته مىشود. مثلاً، كليكوڤن پلىمرى از مولكولهاى كلوكز است. پروتئينها، پلىمرى از آمينواسيدها هستند. مونومر نوكلئيكاسيدها نيز نوكلئوتيد نام دارد.
\(\square\)
براى تشكيل يك نوكلئوتيد، باز آلى نيتروثندار و گروه فسفات به دو طرف قند متصل مىشوند. ييوند بين قند با باز آلى نيتروثندار و گروه فسفات، از نوع

سؤ ال آيا نوكلئوتيد داراى باز آلى آدنين در مولكول RNA با نوكلئوتيد داراى باز آلى آدنين در مولكول DNA يكسان است؟

■ انواع نوكلئوتيدها
 همانطور كه كفتيم، هر نوع نوكلئوتيد در DNA با نوكلئوتيدهاى RNA متفاوت است؛ زيرا، در نوكلئوتيدهاى DNA، قند دئوكسىريبوز وجود دارد و در نوكلئوتيدهاى RNA، قند ريبوز. البته، نوكلئوتيد داراى باز آلى تيمين نيز در ساختار RNA وجود ندارد و بهارجاى آن، ريبونوكلئوتيد يوراسيلدار در ساختار

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ريبونوكلئوتيد} & \multicolumn{4}{|c|}{دئوكسى يبونوكلئوتيد} & نوع نوكلئوتيد \\
\hline G & C & A & U & G & C & A & T & باز آلى \\
\hline \multicolumn{4}{|c|}{ريبوز} & \multicolumn{4}{|c|}{دئوكسى يبوز} & قند \\
\hline \multicolumn{4}{|c|}{RNA} & \multicolumn{4}{|c|}{DNA} & محل استفاده \\
\hline
\end{tabular}
 هـشّل شكل بعدى، سه مولكول AMP ADP ، ATP را نشان میدهد. همانطور كه مشاهده مىكنيد، در اين نوكلئوتيدها، قند ريبوز و باز آدنين وجود دارد و تنها تفاوت، مربوط به تعداد گروههاى فسفات است.

 ! بيشتر نخْوانيد

سوّ ال ا چچند نوع نوكلئوتيد داراى باز آلى گوانين وجود دارد؟
\begin{tabular}{|c|c|c|c|c|}
\hline حالت مطلوب & گروههاى فسفات & قند پنجكربنى & باز آلى نيتروثندار & مجموع \\
\hline نوكلئوتيد كوانيندار & r (¢ & 「 (ريبوز يا دئوكسىريبوز) & | (كوانين) & \(r \times r \times 1=9\) \\
\hline
\end{tabular}

سؤ ال r چند نوع نوكلئوتيد داراى باز يورين وجود دارد؟
\begin{tabular}{|c|c|c|c|c|}
\hline حالت مطلوب & كروههاى فسفات & قند پنجكربنى & باز آلى نيتروثندار & مجموع \\
\hline نوكلئوتيد يوريندار & r & 「 (ريبوز يا دئوكسى ريبوز) & 9 9 (آدنين و كوانين) & \(r \times r \times q=\Delta r\) \\
\hline
\end{tabular}

سؤ ال \begin{tabular}{|l|}
پ
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline حالت مطلوب & گروههاى فسفات & قند پنجكربنى & باز آلى نيتروزندار & مجموع \\
\hline نوكلئوتيد آدنيندار & r (& Y (ريبوز يا دئوكسريبوز) & 1 (آدنين) & \(r \times r \times 1=9\) \\
\hline
\end{tabular}
(انواع نوكلئوتيدهاى فاقد باز آلى آدنين
سُؤ ال F چچند نوع نوكلئوتيد داراى باز آلى يوراسيل وجود دارد؟
\begin{tabular}{|c|c|c|c|c|}
\hline حالت مطلوب & كروههاى فسفات & قند پنجكربنى & باز آلى نيتروثندار & مجموع \\
\hline نوكلئوتيد يوراسيلدار & r (& 1 & ((يوراسيل) & \(r \times 1 \times 1=r\) \\
\hline
\end{tabular}

نَنَه دقت داشته باشيد كه نوكلئوتيد يوراسيلدار، فقط در ساختار RNA وجود دارد و قند آن، ريبوز است.

\section*{§ اتصال نوكلئوتيدها به يكدديگِر}

براى تشكيل رشتههاى پلىنوكلئوتيدى (داراى چند نوكلئوتيد)، نوكلئوتيدها با پيوند فسفودىاستر
 قند نوكلئوتيد ديگر متصل مى شود.
(RNA و DNA
 است. اما DNA زمانى تشكيل مىشودكه رشتههاى پلمنوكلئوتيدى به صورت دوتايى در كنار يكديگر

هشال تشكيل DNA از نوكلئوتيدهاى سازنده آن؛ به شَّل زير رقت كنين.

■ در RNA هم ممـكت است بخششهاى دورشتهاى ديده شود. همانطور كه در شكل كتاب درسى مشخص است، گاهى ممكن است در مولكول RNA نيز بخشهاى دورشتهاى مشاهده شود. مثلاً در مولكول tRNA (كه در ادامه با آن بيشتر آشنا مىشويم)، قسمتهايى دورشتهاى نيز مشاهده مىشوند. در اين بخشها، بازهاى مكمل' در مقابل يكديگَر قرار كرفتهاند و با تشكيل پيوندهاى هيدروثنى، بخشهاى دورشتهاى را تشكيل دادهاند. دقت داشته باشيد كه در اين حالت هم مولكول RNA، مولكولى تكـرشتهاي محسوب
 tRNA

\section*{هقايس}

DNA g RNA

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline محل فعاليت & محل توليد & نقش اصلى & انواع اصلى & پير يميدينها & قند & رشتهها & نوكلئيكاسيد \\
\hline هسته" & \begin{tabular}{l}
هسته \\
(همانندسازى)
\end{tabular} & مادءٔ وراثتى ياخته & حلقوى و خطى & C, T & & r رشته & DNA \\
\hline سيتویلاسم & (رونويسىى) هسته" & \begin{tabular}{l}
نقش در \\
یروتئينسازى
\end{tabular} & \begin{tabular}{l}
rRNA \\
mRNA \\
tRNA
\end{tabular} & C, U & ريبوز & ا رشته & RNA \\
\hline
\end{tabular}
** در پروكاريوتها، هسته وجود ندارد و DNA در سيتوپالاسم قرار دارد. در اين جانداران، همانندسازى و رونويسى نيز در سيتوپیاسم انجام مىشود.
\(\square\)
نوكلئيكاسيدها را مىتوان به دو دستأ حلقوى و خطى تقسيم كرد. الف) نوكلئيكاسيد حلقوى: در اين نوع نوكلئيكاسيدها، دو انتهاى رشتأ پلىنوكلئوتيدى به يكديگر متصل مىشوند؛ در نتيجه، نوكلئيكاسيد انتهاى آزاد ندارد و به صورت حلقوى ديده مىشود. شَلل مقابل، يه هDNA هلقوى رو نشون.

مق)
 ب) نوكلئيكاسيد خطى: اكر دو انتهاى رشتئ پلىنوكلئوتيدى آزاد باشند و به يكديیًر متصل نشوند، نوكلئيكاسيد خطى مىشود.

 مولكول RNA نيز باز آلى A در مقابل باز آلى U قرار مییيرد. به هر جفت از اين بازهاى آلى، بازهاى مكمل كفته مىشود.

نَّانّه در نوكلئيكاسيد خطى، دو انتهاى رشتهٔ پلىنوكلئوتيدى يكسان نيستند. در يک انتها، گروه فسفات و در انتهاى ديگَر، گروه هيدروكسيل (OH قند) قرار دارد. بنابراين، هر رشتئ DNA و RNAى خطى، همواره دو سر متفاوت دارد و اين موضوع، ارتباطى به اندازه و يا تعداد مونومرهاى رشتئ پلىنوكلئوتيدى ندارد. نَّنه دو انتهاى يك مولكول DNAى خطى يكسان هستند؛ زيرا، دو رشتهٔ پلى نوكلئوتيدى آن در خلاف جهت يكديگَر قرار دارند. بنابراين، در يك مولكول DNAى خطى، در هر دو انتها هم گروه فسفات مشاهده مىشود و همَ گروه هيدروكسيل؛ در يكـ رشته، گروه فسفات در انتها هست و در مقابل آن، در رشتأ ديگَ، گروه هيدروكسيل قرار دارد.

\section*{اطلاعات اوليه دربارة ساختار مولكول DNA}

\section*{aroap}

\section*{DNA تصورات اوليه از ساختار}

در ابتدا تصور میشد كه چههار نوع نوكلئوتيد موجود در DNA، به نسبت مساوى در سراسر مولكول توزيع شدهاند. يینى اير. هـ هستن،

\section*{مشاهدات چحارگَاف}

دانشمندى بهنام چارگاف، مقدار نوكلئوتيدها در DNAهاى طبيعى (واقعى و استخراجشده از موجودات زنده) را بررسى كرد. نتايج مشاهدات چارگاف، با فرض
اولئٔ دانشمندان متفاوت بود.
چارگاف فهميد كه مقدار آدنين در DNA با مقدار تيمين برابر است. مقدار گَوانين نيز با مقدار سيتوزين برابر است.
\[
\mathrm{A}=\mathrm{T}, \mathrm{C}=\mathrm{G}
\]

\[
\frac{\mathrm{A}}{\mathrm{~T}}=\frac{\mathrm{G}}{\mathrm{C}}=1
\]

ا; طرفی، הون
\[
\mathrm{A}+\mathrm{G}=\mathrm{T}+\mathrm{C} \Rightarrow \frac{\mathrm{~A}+\mathrm{G}}{\mathrm{~T}+\mathrm{C}}=1
\]

نَّهه در مولكول DNA، نصف بازهاى آلى پورين هستند و نصف ديگر بازهاى آلى، پيريميدين. نَّهة در مولكول DNA، مجموع بازهاى آلى پورين برابر است با مجموع بازهاى آلى پيريميدين.

آيا , ابطةً A+T = C+G هم >رست است؟ ممكن است اين رابطه در يكى مولكول DNA درست باشد اما هميشه اين رابطه برقرار نيست. چون ممكن است
تعداد جفتبازهاى A-T و C-G برابر نباشد. مثلاً، در سؤال بعدى، مجموع نوكلئوتيدهاى A و T بيشتر از مجموع نوكلئوتيدهاى C و G است.
 الم بزارير. يه سؤال دل كنيمر.

از طرفى مىدانيم كه باقىماندهٔ نوكلئوتيدهاى DNA، شامل نوكلئوتيدهاى G و G مى شوند و مقدار اين دو نوكلئوتيد نيز با يكديگَر برابر است: \(\mathrm{G}+\mathrm{C}=1000-\varphi_{00} \Rightarrow r_{00} \xlongequal{\mathrm{G}=\mathrm{C}} \mathrm{C}=\mathrm{G}=\frac{r_{00}}{r}=r_{00}\)

نَنته همانطور كه در اين مثال ديديم، مقدار نوكلئوتيدهاى C و G با مقدار نوكلئوتيدهاى A و T مى تواند برابر نباشد. البته، مى تونه هم برابر بشه.

\section*{} در ادامٔٔ تلاش براى كشف ساختار مولكول DNA، ويلكنيز و فرانكلين' تصاويرى از DNA با كمك پرتوى X' تهيه كردند.的

DNA مهمترين نتايج حاصل از تصويربردارى \(\square\)
 r- بيش از يك رشته داشتن: در DNA بيشتر از يك رشته وجود دارد.
نَّه دقت داشته باشيد كه در اين آزمايش هنوز مشخص نشد كه DNA دورشتهاى است. فقط دانشمندان متوجه شدند كه DNA تكىرشتهاى نيست.

> مدل مولكولـ DNA
 مرل برس.؟ واتسون و كريك براى ارائهٔ مدل مولكولى DNA، از سه چییز استفاده كردند: 1- نتايج آزمايشهاى چارگاف

X X- ادادهماى حاصل از تصاوير تهيهشده با پرتوهاى ץ-

نَّنَ ساختار مولكول DNA، توسط واتسون و كريك مشخص شد اما اثبات نقش DNA به عنوان مادةٔ وراثتى، توسط ايورى (با استفاده از نتايج آزمايش
كريفيت) انجام شد.

\footnotetext{

}

 شده است. اين تحول سبب شده كه علم زيستشناسى به رشتهاى مترقى، توانا و پويا و همشخنين اميدبخش تبديل شود؛ به گونهاى كه انتظارات جامعه از زيستشناسان نسبت به دهاها و سدههاى قبلى بسيار افزايش يافته است.

\section*{4 swer}

كشف ساختار، ماهيت و مدل تكثير ' مادهٔ وراثتى به روايت آزمايش
\begin{tabular}{|c|c|c|c|c|}
\hline نتيجهٔ نهايى & روش & موضوع پثروه & دانشمند & \\
\hline انتقال صفت به باكترىهاى بدون كپسل & تزريق باكترىهاى كچسولدار و بدون كپسول استر یتوكوكوس نومونيا (عامل سينه هِلو) به موش & پيدا كردن واكسن براى آنفلوانزا & كريفيت & 3
3
3
3
3
3 \\
\hline \multirow{3}{*}{عامل انتقال صفت يا همان مادة وراثتى، است نه پروتئين.} & تخريب همأ پروتئينهاى مخلى & \multirow[t]{3}{*}{پیيدا كردن ماهيت عامل تغيير شكل (مادةٔ وراثتى) استر پتوكوكوس نومونيا} & \multirow{3}{*}{\begin{tabular}{l}
ايورى و \\
همكاران
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{c}
3 \\
3 \\
3 \\
0 \\
0 \\
\hline-3 \\
3
\end{tabular}} \\
\hline & سانتريفيوز محتويات مخلوط & & & \\
\hline & اضافهكردن آنزيمهاى تخريبكنـندئه مواد آلى & & & \\
\hline \(\mathrm{G}=\mathrm{C}, \mathrm{A}=\mathrm{T}\) & اندازءگيرى مقدار بازهاى آلى در DNهاى طبيعى & DNA بررسى مقدار بازهاى آلى در & حاركاف & 3 \\
\hline مارم DNA دارد + اندازءگيرى ابعاد & X X DNA با يرتوى & DNA تصويربردارى از مولكول & وريلكينز و & 3 \\
\hline ارائٔ مدل مولكولى DNA؛ مولكول DNA & DNA از نتايج چاركاف، تصاوير تهيهشده از و يافتههاى خود استفاده كردند. & بررسى ساختار مولكولى DNA و ارائٔ مدل مولكولى DNA & واتسون و كريك & \% \\
\hline همانندسازى به صور ت نيمهحفاظتى است و در هر مولكول DNAى جديد، يك رشتأ قديمى نيز وجود دارد. & رشد و تكثير باكترىها در محيط كشتهايى با ايزوتوپهای مختلف نيترورّن و سپّ سانتريفيوز نمونههاى زمانهاى مختلف & \begin{tabular}{l}
كشف و اثبات مدل همانندسازى \\
از بين سه طرح DNA پيشنهادی
\end{tabular} & \begin{tabular}{l}
مزلسون و \\
استال
\end{tabular} & 管 \\
\hline
\end{tabular}

DNA
گَتيم كه هر مولكول DNA از دو رشتئ پلىنوكلئوتيدى ساخته شده است．همانطور كه در شكل مشخص است، اين دو رشته به دور محورى فرضى مى یییچند
 ساختار DNA را به يك نردبان پییجخورده تشبيه مىكنند كه داراى دو ستون و تعدادى پله است：

．DNA

DNA جهار روش مختلف براى نشان دادن مولكول ا－ستون هاى نردبان：دو رشتئ DNA، ستونهاى نردبان را تشكيل مىدهند．در واقع، در هر ستون، قند و فسفات تكرار شدهاند و از طريق پيوند فسفودىاستر به يكديگر متصل مىشوند．

ץr－پلههای نردبان：بازهاى آلى متصل به قند، پِههاى نردبان را تشكيل مىدهند．بازهاى آلى هر رشته، از طريق پيوند هيدرورنى، به باز آلى مقابل خود در رشتأ ديگر متصل مىشوند．

\section*{بازهاى مكمـل}

همانطور كه گفتيم، بازهاى آلى دو رشتئ DNA، با يكديگر پيوند هيدروثنى تشكيل مىدهند．اين پيوندهاى هيدروثنى باعث مىشوند كه دو رشتؤ DNA در كنار هم باقى بمانند．اها זيا يَ باز آلى، مى تونه با هر باز ，ريَّاى پيونر تشكيل بره؟ بواب دنفى هست．

■ بازهاى مكمـل
پیيوندهاى هيدرورثى بين جفتبازها به صورت اختصاصى تشكيل مىشود．بدينترتيب كه باز آدنين（A）با تيمين（T）، پيوند هيدروثنى تشكيل مىدهد و باز گوانين（G）با سيتوزين（C）．به اين جفتبازها، بازهاى مكمل میگويند؛ يعنى، A و T، باز مكمل يكديیر هستند．باز آلى C نيز مكمل باز آلى G است．بر

 باشد، پايدارى و ثبات مولكول DNA بيشتر است． ارتباط بازهاى مكمل و نتايج آزما يشهاى چارگاف：مكمل بودن بازهاى آلى، نتايج آزمايشهاى چارگاف را تأييد مىكند．زيرا، در مولكول DNA، بازهاى A و T همواره در مقابل يكـديگر قرار مىگيرند و بنابراين، به ازاى هر باز آلى A، يك باز آلى T وجود دارد؛ بنابراين، تعداد بازهاى آلى A و T با يكديگَر بايد برابر باشد．همين موضوع، دربارة بازهاى آلى C و G نيز صدق مىكند． نَنتّه دقت داشته باشيد كه چارگاف به مكمل بودن بازهاى آلى پی نبرد و اين موضوع، توسط واتسون و كريیى مشخص شد．

ثبات قطر ماريِّج دورشتهاى DNA
قرارگيرى جفتبازهاى مكمل در مقابل يكديكرَ باعث مىشود كه قطر دو رشتهٔ DNA در هممٔ قسمتهاى آن برابر باشد؛ چون در همأ قسمتهاى DNA، يكى باز تكحلقةاى (C T ا يا در مقابل يك باز دوحلقهاى
 هالت برای مولكول DNA , اليبار مىאن.

سوّ ال در هر جفت نوكلئوتيد مكمل، چند حلقه در بازهاى آلى وجود دارد؟ چون در هر جفت باز، يك باز تكحلقهاى (پيريميدين) در مقابل يك باز دو حلقهاى (يورين) قرار مىگيرد، تعداد حلقٔٔ در بازهاى آلى در هر جفت باز مكمل، \({ }^{\text {r عدد است }}\) سوّ ال در هر جفت نوكلئوتيد مكمل، چند حلقهٔ آلى وجود دارد؟

 r حلقئ آلى در بازهاى آلى وجود دارد. قند موجود در هر نوكلئوتيد نيز يـى حلقه دارد. بنابراين، در مجموع دو باز آلى مكمل و قند متصل به آنها، روى هم ه حلقهٔ آلى دارند.

\section*{مشخصكردن ترتيب نوكلئوتيدهاى هر رشتئ DNA}

تا متوبه بشــين.
هـَّل ترتيب نوكلئوتيدها در يك رشتئ DNA، به صورت ACTGTAC است. ترتيب نوكلئوتيدها در رشتهٔ مكمل را بنويسيد.
در مقابل هر باز آلى، باز مكملش رو قرار مىديم تا ترتيب رشته مكمل رو مشخص كنيم.
\begin{tabular}{lllllllll}
A & C & T & G & T & A & C & \(\leftarrow\) رشتئ اصكمل
\end{tabular}

هشَل ترتيب نوكلئوتيدها در يكـ رشتئ DNA، به صورت GCTATGCATG است. ترتيب نوكلئوتيدها در رشتهٔ مكمل را مشخص كنيد.
\begin{tabular}{lllllllllll}
G & C & T & A & T & G & C & A & T & G & \(\leftarrow\) رشتؤ اصلى مكمل
\end{tabular}

DNA پايدارى
همانطور كه احتمالاً از درس شيمى به ياد داريد، پيوندهاى هيدروثنى برخلاف پيوندهاى كووالانسى، استحكام و انرزى پيوند زيادى ندارند؛ در نتيجه، شكستن يك پيوند هيدرورثى به سادگى صورت مىگيرد. با اين حال، يك مولكول DNA پايدارى زيادى دارد كه دليل آن، تشكيل پيوند هيدروزتى بين هزاران تا ميليونها نوكلئوتيد است. وجود اين تعداد زياد پيوند هيدروزنى، باعث مىشود كه مولكول DNA پايدار باشد. در عين حال، چون شكستن هر پيوند هيدروثنى نياز به انرثى كمى دارد، در مواقع مورد نياز (مثلاً هنگام همانندسازى)، امكان جدا شدن دو رشتئ DNA در نقاطى از آن وجود دارد. حتى در اين حالت نيز پايدارى DNA حفظ مىشود و DNA مىتواند وظايف خود را انجام دهد.
 بهطور محدود تغيير پِير است. اين تغيير پذيرى باعث ايجاد گوناگونى مىشود و چنان كه خواهيم ديد، توان بقاى جمعيتها را در شرايط متغير محيط افزايش مىدهد و زمينئ تغيير گونهها را فراهم مىكند.

\section*{?}

DNA ساختار و مدل مولكولى
:DNA

 ترتيب نوكلئوتيدهاى رشتهٔ ديگًر را مشخص كرد.

\section*{نوكلئوتيدها و نوكلئيكاسيدهاى ديگَر: ATP و RNA}

> نوكلئوتيدها، مستوانند ناقل انرزى و الكترون باشند.
 كه نوكلئوتيدها در ياخته دارند، به عنوان ناقل انرزى و الكترون است.

ATP \(\square\)
آره، ر/ست فونرين. ATP نوعى نوكلئوتيد هست. در واقع، ATP نوعى نوكلئوتيد آدنيندار است كه داراى سه گروه فسفات مىباشد. طى واكنشهاى سوختوسازى ياخته، پيوندهاى پرانرثى بين گروههاى فسفات شكسته مىشود و انرثى آزاد مىشود. نَّنه ATP، انرزى رايج در ياخته است و ياخته در فعاليتهاى مختلف از آن استفاده مىكند.

ATP

ADP
 باز آلى آدنين، قند پنج كربنى ريبوز و سه گروه فسفات است. به مجموعءٔ آدنين و ريبوز، آدنوزين گفته مىشود.

هـ ناقلهاى الكتروت

ناقلهاى الكترون، مولكولهايى هستند كه مى توانند الكترون را حمل كنند و به مولكولهاى ديگَر انتقال دهند. در ساختار اين مولكولها، نوكلئوتيدها شركت دارند. نَنته ناقلهاى الكترون در فرايندهاى ياختهاى مانند تنفس ياختهاى و فتوسنتز شركت دارند. ر/ فصل هاى برى بيشتر رابع بعشون صشبت مىكنيم.
\[
\begin{equation*}
\text { FAD و NADP }{ }^{+} \text {، NAD }{ }^{+} \tag{مشك}
\end{equation*}
\]

نَّته ATP، خود يكى نوكلئوتيد مىباشد اما در ساختار ناقلهاى الكترون، دو نوكلئوتيد آدنيندار وجود دارد. نْنَهِ در همهٔ ناقلهاى انرزى و الكترون، باز آلى آدنين وجود دارد.

نَّه دقت داشته باشيد كه NAD حداقل r فسفات دارند. NADP \({ }^{+}\)نسبت به +NAD ، يك فسفات بيشتر دارد.

فرايندهايى كه با مصرف ATP انجام مىشوند (قسمت اول: دهم)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{توضيحات} & آدرس & فرايند \\
\hline \multicolumn{2}{|r|}{انتقال مواد در خلاف شيب غلظت با كمك پروتئينهاى غشايى} & [[كفتار - فصل r 1 دهم][& انتقال فعال**(معمولاً) \\
\hline \multirow[t]{2}{*}{همراه با تشكيل كيسههاى} & ورود ذرات بزرگى (مانند پروتئينها) به ياختهها & [كفتار 1 [فصل r دهم][& درونبرى (آندوسيتوز) \\
\hline & خروج ذرات بزرگ (مانند پروتئينها) از ياخته & [كفتار 1 - فصل r دهمب] & برونرانى (اكزوسيتوز)*****) \\
\hline \multicolumn{2}{|l|}{بعضى از مواد معدنى با روش انتقال فعال جذب مى شوند.} & & جذب كلسيه و آهن \\
\hline \multicolumn{2}{|l|}{اغلب ويتامينهاى B B C با روش انتشار و يا انتقال فعال جذب مى \%وند.} & & جذبويتامينهاى محلولدر آب \\
\hline \multicolumn{2}{|l|}{} & [[كتار r - فصل r & جا \({ }^{\text {B }}\) \\
\hline \multicolumn{2}{|l|}{در انتهاى حفرهٔ دهانى، كريجهٔ (واكوئول) غذايی با روش درونبرى (آندوسيتوز) تشكيل مىشود.} & [كفتار Y - فصل r & تشكيل كريحهٔ غذايیى در پارامسى \\
\hline \multicolumn{2}{|l|}{محتويات كريحهٔ (واكوئول) دفعى از راه منفذ دفعى و با روش برونرانى (اگزوسيتوز)، از ياخته خارج مى شود.} & [كفتار ¢ - فصل r & دفع محتويات كريحهُ دفعى در پارامسى \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
بعضى از ياختههاى حفرء گوارشى، مواد مغنى را را با بيكانهخوارى (فاگوسيتوز) \\

\end{tabular}} & & جذب در حفرهٔ گوارشى \\
\hline \multicolumn{2}{|l|}{ وارد ياختههاى پوششى شده و با برونرانى از آنها خار خارج مى شوند.} & [كفتار [- فصل \({ }^{\text {¢ دهم] }}\) & درونبرى و برونرانى در مويرگّهاى خونى \\
\hline \multicolumn{2}{|l|}{در بيشتر موارد، بازجذب فعال است و با صرف انرثى زيستى انجام مىگيرد.} & & بازجذب در نفرون (معمولاً) \\
\hline \multicolumn{2}{|l|}{ترشح در بيشتر مواد به روش فعال و باصرف انرثى زيستى انجام مىگيرد.} & & ترشح در نفرون (معمولاً) \\
\hline \multicolumn{2}{|l|}{ماهيان غضروفى (كوسه و سفرهماهى)، علاوهبر كليهها، داراى غدد راستروردماى رانى هستند كه محلول نمك (سديمكلريد) بسيار غليظ را به روده ترشح مىكنـند.} & [[كتار r ـ فـ فـل ه دهمر] & ترشح محلول بسيار غليظنمك به روده توسط غدد راسترودهاى \\
\hline \multicolumn{2}{|l|}{در ماهيان آب شيرين جذب نمك و يونها با انتقال فعال از آبششهاست} & & جذب يونهادر ماهيان آبشيرين \\
\hline \multicolumn{2}{|l|}{در ماهيان آب شور، يونها از طريق آبششها با انتقال فعال دفع مىشوند.} & [[فتار r - فصل ه ه دهم\%] & دفع يونها در ماهيان آب شور \\
\hline \multicolumn{2}{|l|}{ درون يوست و ياختههاى زندهٔ درون استوانئ آوندى ريشه} & [[فتار & ايجاد فشار ريشهاى \\
\hline \multicolumn{2}{|l|}{انتقال فعال ساكارز و يونهاى پتاسيم و كلر به درون ياختههاى نَكَبان روزنه} & [كفتار r - فصل V & وروديونهابه ياختههاىنگَهبان \\
\hline \multicolumn{2}{|l|}{خروج فعال ساكارز و يونهاى پتاسيم و كلر از ياختههاى نگَهبان روزنه} & [[فتار [& خروج يونهالز ياختههاىنگَهبان \\
\hline \multicolumn{2}{|l|}{محل منبع: ورود فعال قند و مواد آلى به ياختههاى آبكشى} & [[فتار [& بارگيرى آبكى \\
\hline \multicolumn{2}{|l|}{محل مصرف: خروج فعال قند و مواد آلى از ياختههاى آبكشى} & [كفتار ז ـ فصل V د & باربردارى آبكى \\
\hline
\end{tabular}
*: انتقال فعال: همانتقالى تلوكز (يا آمينواسيدها) با سديم'، جذب كلسيم و آهن، جذب بعضى ويتامينهاى محلول در آب، بازجذب و ترشح در نفرونها
 شور، انتقال يونهاى معدنى به درون آوندهاى چوبى، ورود و خروج يونها در ياختههاى نگَهبان روزنه، بارگيرى و باربردارى آبكشى

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{فرايندهاى كه با مصرف ATP انجام مى} \\
\hline توضيحات & آدرس & فرايند \\
\hline خروج سه يون سديم از ياخته و ورود دو يون پتاسيم به ياخته با انتقال فعال & [كفتار 1 ـ فصل ا يازدهم] & \\
\hline آزاد شدن ناقلهاى عصبى در فضاى سينایֵى با برونرانى ريزكيسهها & [كفتار 1 - فصل ا يازدهم] & آزاد شدن ناقلهاى عصبى \\
\hline با اتصال ATP به سر ميوزين، اتصال بين ميوزين و اكتين از بين مىرود. & [كفتار \({ }^{\text {- }}\) & جدا شدن سر ميوزين از اكتين \\
\hline ياختههاى درونريز، با برونرانى، محتويات كيسههاى ترشحى را آزاد مىنند. & & ترشح هورمونها \\
\hline & [كفتار \({ }^{\text {- }}\) & بيگًانهخوارى (فاگوسيتوز) \\
\hline ترشح همأ پروتئنهاى دفاعى، با اگزوسيتوز و مصرف ATP انجام مى & [فصل ه ايازدهم] & ترشح انواع پروتئينهاى دفاعى \\
\hline اسيرم براى زنش تازكَ خود، نياز به مصرف انرزى ATP دارد. & [كفتار 1 - فصل V يازدهم] & حركت اسهرم با تارگى \\
\hline انرزي لازم براى تهيئ پلى يپتيد طى فرايند ترمه از مولكول ATP به دست مى آيد & [[كتار - ف فصل r & ترجمه در ريبوزومها \\
\hline اتصال آمينواسيد به tRNA توسط نوعى آنزيهم ويزه، نيازمند انرزى است. & [[كتار - - فصل r & tRNA اتصال آمينواسيد \\
\hline براى انجام واكنشهاى مربوط به تجزئُ كَلوكز انرزى فعالسازى نياز هست. اين انرثى از ATP تأمين مى شود. كلوكز باگرفتن فسفاتهاى ATP، فسفاته مىشود. & [[كتار - - فصل ه دوازدهم] & تبديل كَلوكز به كَلوكز فسفاته \\
\hline گرچهه واكنشهاى كالوين مستقل از نور انجام مىشوند، اما انجام اين واكنشها وابسته به ATP و NADPH حاصل از واكنشهاى نورى است و در دو قسمت چرخئ كالوين، ATP مصرف مىشود: ا- تبديل مولكول سهكربنى به قند سهكربنى و r- تبديل ريبولوز فسفات به ريبولوز بيسفسفات. & & تبديل مولكول سهكربنى به قند سهكربنى در چرخأ كالوين تبديل ريبولوز فسفات به ريبولوز بيسفسفات \\
\hline
\end{tabular}

1- انتقال فعال: فعاليت پمپ سدیم - چتاسيم، ورود پروتون (H+ به فضاى درون تيلاكوئيد"، انتقال پروتون به فضاى بين دو غشاى ميتوكندرى" r- r- آندوسيتوز: بيگًانهخوارى (فاگوسيتوز) r- اگزوسيتوز: آزاد شدن ناقلهاى عصبى، ترشح هورمونها، ترشح انواع پروتئينهاى دفاعى نَّته بهطور كلى، ترشح مواد با روش اگزوسيتوز انجام مىشود (بهجز مواد ليييدى كه مىتوانند از غشاى ياخته عبور كنند). * در ميتوكندرى و تيلاكوئيد، عبور پروتون در خلاف جهت شيب غلظت با روش انتقال فعال ولى بدون مصرف انرزى ATP است. اين جابهجايىها با استفاده از انرزى الكترونهاى برانگَيخته رخ مىدهند.

\section*{}

در آزمايش ايورى مشخص شده كه اطلاعات وراثتى در DNA قرار دارند و مىتوانند از نسلى به نسل ديگر منتقل شوند. در هر مولكول DNA، اطلاعات وراثتى در واحدهايى بهنام زن سازماندهى شدهاند. در واقع، ثن بخشى از مولكول DNA است كه دستورالعمل لازم براى توليد RNA و پروتئين را در خود ذخيره دارد.

 مشخص است كه در ايجاد سرطان، زنها نقش دارند. زنهاى زيادى شناخته شدهاند كه در بروز سرطان مؤثرند.

mRNA

تعريف: RNA، نوعى مولكول نوكلئيكاسيد تكـرشتهاى است.

 RNA انواع
 فرايند پروتئينسازى نقش اصلى را برعهيه دارند:
 . m ، پروتئينسازى مىكنند. tRNA - Y
به سمت ريبوزومها مى برند. rRNA - -

 tRNA سافتتمان. ״روتئين. رو مى سازه.
\[
\text { DNA } \xrightarrow{\text { Dروتئين }}
\]

آنز يمى هستند و بعضى نيز در تنظيم بيان زن نقش دارند. دقت داشته باشيد كه بهجز سه نوع RNA دكرشده، انواع ديگَرى از RNA نيز در ياختهها ورجود دارند.
 رونويسى است. با اتصال اين RNAها، از كار ريبوزوم (رناتن) جلوگيرى مىشود. در نتيجه، عمل ترجمه متوقف و RNAى ساختهشده پس از مدتى تجزيه مىشود.

 DNA

\section*{1 anulen}

\begin{tabular}{|c|c|c|c|}
\hline rRNA & tRNA & mRNA & RNA نوع مولكول \\
\hline رنِاى ريبوزومى` & رِناى ناقل & رِناى پِ & معادل فارسى \\
\hline هسته (رونويسى) & هسته (رونويسى) & هسته (رونويسى) & محل توليد در يوكاريوتها (فرايند توليد) \\
\hline سيتوپاسم & سيتوپّاسم & سيتوپالاسم & محل فعاليت \\
\hline شركت در ساختار ريبوزم & انتقال آمينواسيدها به ريبوزوم براى ترجمه & انتقال اطلاعات لازم براى ترجمه از DNA به ريبوزوم & نقش \\
\hline ندارد & ندارد & + & كدون \\
\hline ندارد & + & ندارد & آنتى \\
\hline - & + & ندارد & بخشهاى دور شتهاى \\
\hline - & تا خوردن & پيرايش & تغيير پس از توليد در يوكاريوتها \\
\hline
\end{tabular}
! بـيشتر نخوانيد

 : ترتيب نوكلئوتيدها
براساس قانون جفت بازهاى مكمل، با مشخصشدن ترتيب نوكلئوتيدها در يك رشته، مىتوان ترتيب نوكلئوتيدها در رشتئ مقابل را تعيين كرد. براى اين كار، كافى است كه مطابق نمونd زير، بازهاى مكمل را مشخص كنيه:
\begin{tabular}{lllll}
A & T & G & C & \(\leftarrow\) رشتٔٔ اصلى مكل
\end{tabular}

سؤ ال اتر ترتيب نوكلئوتيدها در چهار رشتئ DNA، به ترتيب GCTGCAGTA ،AGCTGACTG ، TCAGATGC و CCATGACT باشد، ترتيب نوكلئوتيدها در رشتئ مكمل هر يكى از رشتههاى مذكور را بنويسيد.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & T & C & A & G & A & T & G & C & رشتهٔ اصلى & \multirow[b]{2}{*}{مولكول 1:} \\
\hline & A & G & T & C & T & A & C & G & رشته مكمل -- & \\
\hline A & G & C & T & G & A & C & T & G & رستٔ اصن & \multirow[b]{2}{*}{مولكول r:} \\
\hline T & C & G & A & C & T & G & A & C & رشتهٔ مكمل & \\
\hline G & C & T & G & C & A & G & T & A & رشتئ اصلى & \multirow[b]{2}{*}{مولكول r:} \\
\hline C & G & A & C & G & T & C & A & T & رشتهٔ مكمل & \\
\hline & C & C & A & T & G & A & C & T & رتئ اصن & \multirow[b]{2}{*}{مولكول F:} \\
\hline & G & G & T & A & C & T & G & A & رشتهٔ مكمل & \\
\hline
\end{tabular}

\section*{تعداد نوكلئوتيدها}

برای دل ايرْ سبك سؤالات، باير از نتايج آزمايشعهاى هارُكاف و رابطههاى زير استفاره كنيعم:
\[
\begin{aligned}
& \text { رابطةٌ } \\
& \text { رابطةٔ r: }
\end{aligned}
\]
\[
\begin{aligned}
& \text { بنابراين، هنگام حل اينگّونه از سؤالات، بايد به چند نكته توجه كنيم: } \\
& \text { ا- تعداد باز آلى A، با تعداد باز آلى T برابر است. } \\
& \text { r- تعداد باز آلى G، با تعداد باز آلى C برابر است. } \\
& \text { ץ- تعداد نوكلئوتيدها در هر رشتئ DNA، نصف كل نوكلئوتيدهاست. } \\
& \text { Y } \\
& \text { (A + T) }+(\mathrm{C}+\mathrm{G})=\text { = تعداد كل نوكلئوتيدها }
\end{aligned}
\]

 گوانيندار را حساب كنيد.

\(\mathrm{T}=\mathrm{A}=\Gamma_{\circ 0} \Rightarrow \mathrm{~T}+\mathrm{A}=\mu_{\circ \circ} \Rightarrow \mathrm{C}+\mathrm{G}=\varphi_{00-}-\mu_{\circ \circ}=\mu_{\circ \circ} \Rightarrow \mathrm{C}=\mathrm{G}=\mu_{\circ}\)
پيريميدين (تكحلقهاى) است
 مولكول، سيتوز ين هستند؟ A برابر با نصف تعداد كل نوكلئوتيدهاست. بنابراين، اكر تعداد كل نوكلئوتيدها برابر با n باشد، درصد نوكلئوتيدها DNA با
 در كل مولكول برابر است با:
\(A+T=\Lambda_{0} \% / n \Rightarrow C+G=100-\Lambda_{0}=r_{0} \% / n \Rightarrow C=G=10 \% / n\)
سؤال از ما خواسته است كه حساب كنيم چند درصد از بازهاى آلى تكحلقهاى (يعنى پيريميدينها)، سيتوزين هستند. پس داريم:

سُؤ ال F در يكى مولكول DNA با آلى نيتروڤندار مشاهده مىشود؟

 در سؤال كفته شده است كه T \(\frac{G}{T}+\frac{C}{A}=\frac{G+C}{T+A}=r \Rightarrow G+C=r(A+T)\)
مىدانيم كه تعداد كل نوكلئوتيدها = (C + + T + + +) . اگر در اين رابطه بهجاى (C+G) بنويسيم (A + T) ب، داريم:
\[
(A+T)+r(A+T)=r(A+T)=r_{000} \Rightarrow A+T=\frac{r_{000}}{r}=1000 \xlongequal{A=T} A=T=\omega_{000}
\]
\[
\frac{\mathrm{G}}{\mathrm{~T}}=r \Rightarrow \mathrm{G}=r \mathrm{~T} \stackrel{\mathrm{~T}=\mathrm{D}^{\circ} 0}{\Longrightarrow} \mathrm{G}=1000 \stackrel{\mathrm{G}=\mathrm{C}}{\Longrightarrow} \mathrm{C}=1000
\]

حالا برمىگرديم به رابطئ اول:

\section*{انواع پيوندها}

\(\square\)
 نوكلئوتيدهاى رشته درست است، بهجز آخرين نولئوتيد. در آخرين نوكلئوتيد، گروه فسفات وجود دارد كه پيوند فسفودىاستر تشكيل نمىدهد (اًه ر/ اين)

برابر است با:
n-1:RNA \(\frac{\mathbf{n}}{r}-1\) خطى
(\(\frac{n}{r}=\) DNA تعداد نوكلئوتيدها در كل مولكول RNA و تعداد نوكلئوتيدها در يك رشته \()\), DNA \(=\) n
\(n-1=100-1=99\)
سؤ ال / در يكى مولكول RNA با 100 نوكلئوتيد، چند پیيوند فسفودىاستر وجود دارد؟
 \(\frac{n}{r}-1=\frac{r_{00}}{r}-1=r 00-1=199\)

تعداد يبيوندهاى فسفودىاستر در كل مولكول DNA

 \(n-r=r_{00}-r=r a \lambda\) فسفودىاستر برابر است با:

شسؤّال F مولكول DNA را حساب كنيد.
\(\frac{\mathrm{n}}{\mathrm{r}}-1=19 \mathrm{~A} \Rightarrow \frac{\mathrm{n}}{\mathrm{r}}=199 \Rightarrow \mathrm{n}=r 90\)
با توجه به تعداد ييوندهاى فسفودىاستر در هر رشتئ DNA، تعداد كل نوكلئوتيدها برابر است با:

تعداد كل ييوندهاى فسفودىاستر در مولكول DNA برابر است با:
保
هر رشتؤ

(تعداد نولئوتيدها در كل مولكول n = تعداد نوكلئوتيدها در يك رشتهٔ مولكول ت
هر رشتهٔ DNAى حلقوى: DNA

 \(A=T=r_{\circ 0} \Rightarrow A+T=\Lambda_{\circ}\) DNA
\(\mathrm{C}=\mathrm{G}=\mathrm{r}_{\circ 0} \Rightarrow \mathrm{C}+\mathrm{G}=9_{00}\)
\(\mathrm{n}=(\mathrm{A}+\mathrm{T})+(\mathrm{C}+\mathrm{G})=100+900=1 \mathrm{~F}_{00}\)
ت \(=\) = \(=1\) \&o
ם قند - فسغات
 يكى قنر نوكلؤتي نورش و ويكى هم قنر نوكلئوتير بعرى؛ بنابراين، تعداد ييوندهاى قند ـ فسفات در DNAى حلقوى، دو برابر تعداد ييوندهاى فسفودىاستر است.
\[
\begin{aligned}
& \text { تعداد بيوند ـ قند فسفات در كل DNA الى حلقوى: rn } \\
& \text { تعداد ييوند ـ قند فسفات در هر رشتئ DNA n حلقوى: }
\end{aligned}
\]

n-1 خطى: DNA سؤ ال 1 اتر در هر رشتئ يكى DNAى خطى، 199 پیيوند فسفودىاستر وجود داشته باشد، در كل اين مولكول، چند پيوند قند ـ فسفات \(\frac{n}{r}-1=199 \Rightarrow r \times\left(r \times\left(\frac{n}{r}-1\right)+1\right)=v 90\)
 \(n=r_{00}+r_{00}=V_{00} \Rightarrow r n-1=r\left(\gamma_{\circ 0}\right)-1=1 r_{99}\)

در هر نوكلئوتيد، يك مولكول قند با يك باز آلى پيوند تشكيل مىدهد. بنابراين، همواره تعداد نوكلئوتيدها برابر است با تعداد پيوند قند ـ باز.
تعداد پيوندهاى قند باز در نوكلئيكاسيدى با n نوكلئوتيد: n
 \(\Delta 9 V-400=19 V\)

كفتيم كه تعداد پيوندهاى قند ـ باز برابر است با تعداد نوكلئوتيدها. بنابراين داريم:
سؤ ال|| در يكى مولكول DNAى خطى، 19^ پيوند قند ـ فسفات وجود دارد. در اين مولكول، چند پیيوند قند ـباز وجود دارد؟ \(r n-r=19 \Lambda \Rightarrow r n=r \circ \circ \Rightarrow n=100 \Rightarrow\) ييوند قند ـ باز \(=n=100\)
 هيرروثنى تشكيل مى شه. ر/ اون صورت، توبيهى برای بواب نرارن. به اين. سؤالات وبور نراره.

تعداد كل پيوند هيدرورزنى: rG + rA = n + G

دقت داشته باشيد كه در اين رابطهها، مىتوان بهجاى G نوشت C و بهجاى A نيز مىتوان T Tا قرار داد. \(\mathrm{n}+\mathrm{G}=1000+100=1100\)

\(A=\mu_{0} \% \times \omega_{000}=r_{0}\)
 \(\mathrm{G}=\mathrm{a}_{\mathrm{oo}}-\mu_{\mathrm{oo}}=\mu_{\text {oo }}\) \(r \mathrm{G}+r \mathrm{~A}=r\left(r_{\circ \circ}\right)+r\left(r_{\circ}\right)=1 \mu_{\circ}\)

تعداد حلقdها
رسيريم به آخرين. بشش دسئلهها. اين. با ريكه فيلى سارهتر هست و راهت تموم ميشه.

در هر نوكلئوتيد، يكى مولكول قندى وجود دارد. هر قند نيز داراى يك حلقه است. بنابراين، تعداد حلقههاى قندى در هر نوكئيكاسيد، برابر است با تعداد نوكلئوتيدها.
تعداد حلقههاى قند در نوكلئيكاسيد: n
\(n=\varphi_{0}\)
سؤ ال ال در يک RNA با Fo نوكلئوتيد، چند حلقؤ آلى در مولكولهاى قندى ديده مىشود؟
\(\square\)
 حلقههاى آلى نيتروزندار در جفتبازهاى مكمل حلقههاى بازهاى آلى برابر است با r
\[
\frac{\text { rn }}{r} \text { :DNA تعداد حلقههاى بازهاى آلى در }
\]

نَّنهّ چون تعداد بازهاى آلى در RNA از قاعدة خاصى پيروى نمىكند، رابطئ مشخصى براى تعداد حلقههاى بازهاى آلى در RNA نمى توان مشخص كرد．
 n

 هر كدام از نوكلئوتيدها．（مجموعاً دو حلقٔة قندى）بنابراين، تعداد كل حلقهمای آلى آلى در يك مولكول

\(\frac{\Delta \mathbf{n}}{r}\) ：DNA تعداد كل حلقهماى آلى در

حساب كنيد．
تعداد حلقهماى مولكولهاى قند برابر است با تعداد كل نوكلئوتيدها．بنابراين، هاريم： تموم شر！بريم سراغ بمعبنىى．
\(n=r_{00} \Rightarrow \frac{\Delta n}{r}=\Delta\left(\frac{r_{00}}{r}\right)=\Delta 00\)

مسائل DNA و RNA
\begin{tabular}{|c|c|c|c|c|c|}
\hline ， & يكـ رشتئ DNA & خطى & يكـ رشتهٔ DNAى خطى & RNA & نوكلئيكاسيد \\
\hline n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & نوكلئوتيدها \\
\hline n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & \(\frac{\mathrm{n}}{r}\) & n & قند \\
\hline n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & \(\frac{\mathrm{n}}{r}\) & n & فسفات \\
\hline n & \(\frac{\mathrm{n}}{r}\) & n & \(\frac{\mathrm{n}}{r}\) & n & باز آلى \\
\hline \(\frac{n}{r}\) & \(\frac{\mathrm{n}}{r}\) ت。 & \(\frac{n}{r}\) & \(\frac{n}{r}\) U。 & n تا & باز پورين \\
\hline \(\frac{\mathrm{n}}{r}\) & \(\frac{n}{r}\) ت。 & \(\frac{\mathrm{n}}{r}\) & \(\frac{n}{r}\) ت。 & n ت 。 & باز پيريميدين \\
\hline \(\frac{r}{r} \mathrm{n}\) & \(n \mathrm{E} \frac{\mathrm{n}}{\mathrm{r}}\) & \(\frac{r}{r} n\) & \(n \mathrm{E} \frac{\mathrm{n}}{\mathrm{r}}\) & rn ت n & حلقدهاى بازهاى آلى \\
\hline \(\frac{\Delta}{r} n\) & \(\frac{r n}{r} \mathrm{H}_{\mathrm{n}} \mathrm{n}\) & \(\frac{\Delta}{r} n\) & \(\frac{r n}{r} \mathrm{~L}_{\mathrm{n}} \mathrm{n}\) & rn تا Yn & حلقهاى آلى \\
\hline n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & \(\frac{\mathrm{n}}{\mathrm{r}}\) & n & قند－باز \\
\hline rn & n & \(r n-r\) & \(\mathrm{n}-1\) & rn－1 & قند ـ فسفات \\
\hline n & \(\frac{\mathrm{n}}{r}\) & \(n-r\) & \(\frac{\mathrm{n}}{r}-1\) & \(\mathrm{n}-1\) & فسفو دىاستر \\
\hline \[
\begin{aligned}
& \mathrm{n}+\mathrm{G}= \\
& r \mathrm{~A}+\mathrm{rG}
\end{aligned}
\] & － & \[
\begin{aligned}
& \mathrm{n}+\mathrm{G}= \\
& r \mathrm{~A}+r \mathrm{G}
\end{aligned}
\] & 。 & ＂－ & پیيوند هيدروثنى \\
\hline
\end{tabular}
\％در بخشهايى از يك مولكول RNA، مثل tRNA، ممكن است پييوند هيدروزثى تشكيل شود اما نمىتوان رابطءٔ مشخصى براى تعداد يبيوند هيدروثّى در
```


[^0]:    
    
    

